Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126115

RESUMO

Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1ß), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1ß showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.


Assuntos
Condrócitos , Conexina 43 , Interleucina-1beta , Osteoartrite , Osteoblastos , Fator de Necrose Tumoral alfa , Humanos , Conexina 43/metabolismo , Conexina 43/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Líquido Sinovial/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Idoso , Pessoa de Meia-Idade , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Artropatias/metabolismo , Artropatias/patologia , Artropatias/genética
2.
Connect Tissue Res ; 64(4): 389-399, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092666

RESUMO

PURPOSE: Resident articular stem cells isolated using a migratory assay called Migratory Chondroprogenitors (MCPs) have emerged as a promising cellular therapeutic for the treatment of cartilage pathologies. In-vivo studies using MCPs report their superiority over bone-marrow mesenchymal stem cells and chondrocytes for treating chondral defects. However, there is no consensus on their isolation protocol. This study aimed to compare four reported isolation methods of MCPs and identify the optimal and feasible protocol for future translational work. METHODS: Human MCPs isolated from osteoarthritic cartilage (n = 3) were divided into four groups: a) MCP1: 8-15 mm cartilage explants, b) MCP2: 8-10 mm explants digested in 0.1% collagenase for 2 hrs. and cultured c) MCP3: 1 mm cartilage explants and d) MCP 4: 25 mm explants with a X tear, 7-day culture, and trypsinization to release migrated cells. The MCPs were subjected to the following analysis: growth kinetics, surface marker expression, mRNA gene expression for markers of chondrogenesis and hypertrophy, and trilineage differentiation. RESULTS: MCPs isolated via the four methods showed similar surface marker profiles, chondrogenic (SOX-9, ACAN, COL2A1) and hypertrophic (COL1, RUNX2) gene expression. The migration time for the MCP3 group was the longest. The MCP1, MCP2, and MCP4 groups produced MCPs with comparable cellular expansion feasibility. CONCLUSIONS: MCPs can be preferably isolated by the any of the three above methods based on the investigator's discretion. In the case of small cartilage samples similar to the MCP3 group, the isolation of MCP is plausible, keeping in mind the additional time required.


Assuntos
Cartilagem Articular , Humanos , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Hipertrofia/metabolismo , Condrogênese
3.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769232

RESUMO

Articular cartilage is vulnerable to mechanical overload and has limited ability to restore lesions, which leads to the development of chronic diseases such as osteoarthritis (OA). In this study, the chondrogenic responses of human bone marrow mesenchymal stem cells (BMMSCs) and OA cartilage-derived chondrocytes in 3D chondroitin sulfate-tyramine/gelatin (CS-Tyr)/Gel) hydrogels with or without experimental mechanical load have been investigated. Chondrocytes were smaller in size, had slower proliferation rate and higher level of intracellular calcium (iCa2+) compared to BMMSCs. Under 3D chondrogenic conditions in CS-Tyr/Gel with or without TGF-ß3, chondrocytes more intensively secreted cartilage oligomeric matrix protein (COMP) and expressed collagen type II (COL2A1) and aggrecan (ACAN) genes but were more susceptible to mechanical load compared to BMMSCs. ICa2+ was more stably controlled in CS-Tyr/Gel/BMMSCs than in CS-Tyr/Gel/chondrocytes ones, through the expression of L-type channel subunit CaV1.2 (CACNA1C) and Serca2 pump (ATP2A2) genes, and their balance was kept more stable. Due to the lower susceptibility to mechanical load, BMMSCs in CS-Tyr/Gel hydrogel may have an advantage over chondrocytes in application for cartilage regeneration purposes. The mechanical overload related cartilage damage in vivo and the vague regenerative processes of OA chondrocytes might be associated to the inefficient control of iCa2+ regulating channels.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Condrócitos/metabolismo , Sulfatos de Condroitina/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Células Cultivadas , Diferenciação Celular , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Condrogênese , Engenharia Tecidual
4.
Mar Drugs ; 18(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297528

RESUMO

Osteoarthritis (OA) remains a prevalent chronic disease without effective prevention and treatment. Amentadione (YP), a meroditerpenoid purified from the alga Cystoseira usneoides, has demonstrated anti-inflammatory activity. Here, we investigated the YP anti-osteoarthritic potential, by using a novel OA preclinical drug development pipeline designed to evaluate the anti-inflammatory and anti-mineralizing activities of potential OA-protective compounds. The workflow was based on in vitro primary cell cultures followed by human cartilage explants assays and a new OA co-culture model, combining cartilage explants with synoviocytes under interleukin-1ß (IL-1ß) or hydroxyapatite (HAP) stimulation. A combination of gene expression analysis and measurement of inflammatory mediators showed that the proposed model mimicked early disease stages, while YP counteracted inflammatory responses by downregulation of COX-2 and IL-6, improved cartilage homeostasis by downregulation of MMP3 and the chondrocytes hypertrophic differentiation factors Col10 and Runx2. Importantly, YP downregulated NF-κB gene expression and decreased phosphorylated IkBα/total IkBα ratio in chondrocytes. These results indicate the co-culture as a relevant pre-clinical OA model, and strongly suggest YP as a cartilage protective factor by inhibiting inflammatory, mineralizing, catabolic and differentiation processes during OA development, through inhibition of NF-κB signaling pathways, with high therapeutic potential.


Assuntos
Antirreumáticos/farmacologia , Cianobactérias/química , Diterpenos/farmacologia , Osteoartrite/prevenção & controle , Anti-Inflamatórios não Esteroides/farmacologia , Antirreumáticos/química , Calcificação Fisiológica/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Técnicas de Cocultura , Diterpenos/química , Durapatita , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta , Osteoartrite/patologia , Cultura Primária de Células , Sinoviócitos/efeitos dos fármacos
5.
Osteoarthritis Cartilage ; 27(1): 148-157, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201492

RESUMO

OBJECTIVE: A hallmark of osteoarthritis (OA) is degradation of articular cartilage proteoglycans. In isolated human OA chondrocytes, the anti-inflammatory cytokine Interleukin-37 (IL-37) lowers the expression of the proteolytic MMP and ADAMTS enzymes, which mediate this degradation. Therefore, we investigated if IL-37 protects against proteoglycan loss in freshly obtained human OA explants. MATERIAL AND METHODS: Human OA cartilage explants were incubated with IL-37. Release of sulphated proteoglycans (sGAGs) was measured with the dimethylmethylene-blue assay. Production and degradation of newly synthesized proteoglycans was measured using 35S-sulphate. Proteoglycan and proteolytic enzyme expression were analyzed by qPCR and Western Blot. Proteolytic activity was determined by measuring MMP- and ADAMTS-generated aggrecan neo-epitopes with ELISA and by using MMP-3-, MMP-13- or ADAMTS-5-inhibitors. RESULTS: Over time, a linear release of sGAGs from OA cartilage was measured. IL-37 reduced this release by 87 µg/ml (24%) 95%CI [21.04-141.4]. IL-37 did not affect 35S-sulphate incorporation or proteoglycan gene expression. In contrast, IL-37 reduced loss of 35S-sulphate labeled GAGs and reduced MMP-3 protein expression, indicating that IL-37 inhibits proteoglycan degradation. Remarkably, we observed two groups of patients; one group in which MMP-3-inhibition lowered sGAG release, and one group in which ADAMTS5-inhibition had this effect. Remarkably, IL-37 was only functional in the group of patients that responded to MMP-3-inhibition. CONCLUSION: We identified a relationship between IL-37 and reduced sGAG loss in OA cartilage. Most likely, this effect is mediated by inhibition of MMP-3 expression. These results suggest that IL-37 could be applied as therapy in a subgroup of OA patients, in which cartilage degradation is mediated by MMP-3.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Interleucina-1/farmacologia , Metaloproteinase 3 da Matriz/metabolismo , Osteoartrite/metabolismo , Proteoglicanas/metabolismo , Cartilagem Articular/metabolismo , Relação Dose-Resposta a Droga , Humanos , Interleucina-1/administração & dosagem , Inibidores de Metaloproteinases de Matriz/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Técnicas de Cultura de Tecidos
6.
BMC Vet Res ; 12(1): 135, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27369779

RESUMO

BACKGROUND: Platelet-rich plasma (PRP) preparations are a common treatment in equine osteoarthritis (OA). However, there are controversies regarding the ideal concentration of platelets and leukocytes in these biological substances necessary to induce an adequate anti-inflammatory and anabolic response in articular cartilage. The aims were to study the influence of leukocyte- and platelet-rich gel (L-PRG) and pure platelet-rich gel (P-PRG) supernatants on the histological changes of cartilage, the degree of chondrocyte apoptosis, the production of hyaluronan (HA) and the gene expression of nuclear factor kappa beta (NFkß), matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), collagen type I alpha 1 (COL1A1), collagen type II alpha 1 (COL2A1) and cartilage oligomeric matrix protein (COMP) in normal cartilage explants (CEs) challenged with lipopolysaccharide (LPS). RESULTS: Overall, 25 % L-PRG supernatant (followed in order of importance by, 50 % P-PRG, 25 % P-PRG and 50 % L-PRG) represented the substance with the most important anti-inflammatory and anabolic effect. 25 % P-PRG supernatant presented important anabolic effects, but it induced a more severe chondrocyte apoptosis than the other evaluated substances. CONCLUSIONS: 25 % L-PRG supernatant presented the best therapeutic profile. Our results demonstrate that the biological variability of PRP preparations makes their application rather challenging. Additional in vivo research is necessary to know the effect of PRP preparations at different concentrations.


Assuntos
Apoptose/efeitos dos fármacos , Cartilagem/citologia , Cartilagem/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Hialurônico/metabolismo , Animais , Plaquetas/metabolismo , Cartilagem/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Feminino , Géis/farmacologia , Cavalos , Ácido Hialurônico/análise , Lipopolissacarídeos/farmacologia
7.
Connect Tissue Res ; 55(5-6): 348-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111190

RESUMO

OBJECTIVE: We investigated whether COMP may modify cartilage metabolism and play a role as an endogenous disease aggravating factor in OA. MATERIALS AND METHODS: Full-length and momomeric COMP was recombinantly expressed in human embryonic kidney cells and purified it via affinity chromatography. Purified COMP was used to stimulate either primary human chondrocytes or cartilage explants. Changes in the expression profiles of inflammatory genes, differentiation markers and growth factors were examined by immunoassay and by quantitative real-time reverse-transcription polymerase chain reaction. RESULTS: Incubation of primary human chondrocytes or cartilage explants in the presence of COMP did not induce statistically significant changes in the expression of IL-6, MMP1, MMP13, collagen I, collagen II, collagen X, TGF-ß1 and BMP-2. CONCLUSIONS: In contrast to collagen II and matrilin-3, COMP lacks the ability to trigger a proinflammatory response in chondrocytes, although it carries an RGD motif and can bind to integrins. COMP is a well-accepted biomarker for osteoarthritis but increased COMP levels do not necessarily correlate with inflammation.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Cartilagem/fisiologia , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Osteoartrite/metabolismo , Análise de Variância , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem/metabolismo , Cromatografia de Afinidade , Colágeno/metabolismo , Primers do DNA/genética , Células HEK293 , Homeostase/genética , Humanos , Imunoensaio , Immunoblotting , Interleucina-6/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/metabolismo
8.
J Orthop Res ; 42(8): 1682-1695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38460961

RESUMO

Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1ß and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1ß and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Cartilagem Articular/patologia , Suínos , Fumaça/efeitos adversos , Interleucina-1beta/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Nicotiana/efeitos adversos , Progressão da Doença
9.
Polymers (Basel) ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38891518

RESUMO

Osteoarthritis (OA) is a chronic joint disease characterized by irreversible cartilage degradation. Current clinical treatment options lack effective pharmaceutical interventions targeting the disease's root causes. MMP (matrix metalloproteinase) inhibitors represent a new approach to slowing OA progression by addressing cartilage degradation mechanisms. However, very few drugs within this class are in preclinical or clinical trial phases. Hydrogel-based 3D in vitro models have shown promise as preclinical testing platforms due to their resemblance to native extracellular matrix (ECM), abundant availability, and ease of use. Metalloproteinase-13 (MMP-13) is thought to be a major contributor to the degradation of articular cartilage in OA by aggressively breaking down type II collagen. This study focused on testing MMP-13 inhibitors using a GelMA-alginate hydrogel-based OA model induced by cytokines interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α). The results demonstrate a significant inhibition of type II collagen breakdown by measuring C2C concentration using ELISA after treatment with MMP-13 inhibitors. However, inconsistencies in human cartilage explant samples led to inconclusive results. Nonetheless, the study highlights the GelMA-alginate hydrogel-based OA model as an alternative to human-sourced cartilage explants for in vitro drug screening.

10.
Regen Ther ; 26: 346-353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036443

RESUMO

Introduction: Osteoarthritis (OA), a chronic inflammatory joint disorder, still lacks effective therapeutic interventions. Consequently, the development of convenient experimental models is crucial. Recently, research has focused on the plasticity of Mesenchymal Stem/stromal Cells, particularly adipose-derived ones (ASCs), in halting OA progression. This study investigates the therapeutic potential of a cell-free approach, ASC-derived conditioned medium (CM), in reversing cytokine-induced OA markers in an ex vivo model of human cartilage explants. Methods: 4 mm cartilage punches, derived from the femoral heads of patients undergoing total hip replacement, were treated with 10 ng/ml TNFα, 1 ng/ml IL-1ß, or a combination of both, over a 3-day period. Analysis of OA-related markers, such as MMP activity, the release of NO and GAGs, and the expression of PTGS2, allowed for the selection of the most effective inflammatory stimulus. Subsequently, explants challenged with TNFα+IL-1ß were exposed to CM, consisting of a pool of concentrated supernatants from 72-h cultured ASCs, in order to evaluate its effect on cartilage catabolism and inflammation. Results: The 3-day treatment with both 10ng/ml TNFα and 1ng/ml IL-1ß significantly increased MMP activity and NO release, without affecting GAG release. The addition of CM significantly downregulated the abnormal MMP activity induced by the inflammatory stimuli, while also mildly reducing MMP3, MMP13, and PTGS2 gene expression. Finally, SOX9 and COL2A1 were downregulated by the cytokines, and further decreased by CM. Conclusion: The proposed cartilage explant model offers encouraging evidence of the therapeutic potential of ASC-derived CM against OA, and it could serve as a convenient ex vivo platform for drug screening.

11.
Bioelectron Med ; 8(1): 14, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100947

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common and debilitating condition characterized by degeneration of hyaline cartilage. Currently, there is no treatment for OA that directly targets degradation of cartilage matrix. Capacitively coupled electric fields (CCEFs) represent a noninvasive and cost-effective treatment modality that can potentially restore articular cartilage homeostasis. Previous studies showed that stimulation of articular cartilage with CCEFs resulted in upregulation of anabolic factors and downregulation of catabolic factors. These studies didn't explain the derivation of the CCEFs or verify their uniformity and field strength, so it's possible that cartilage wasn't exposed to uniform field strength. The present study aims to employ CCEFs with verified uniform field strength in two in-vitro models of OA to investigate its potential to preserve cartilage matrix and validate the results of the aforementioned studies. METHODS: Rabbit hyaline chondrocytes and full-thickness bovine articular cartilage explants were cultured in the absence or presence of CCEF and in the absence or presence of Interleukin1-B (IL-1B). Quantitative polymerase chain reaction (QPCR) was performed on chondrocytes to measure gene expression of ADAM-TS4, MMP3, MMP9, IL-6, TIMP1, and TIMP2. QPCR was performed on explants to measure gene expression of MMP3, Aggrecan, Collagen-2, and TIMP1. Aggrecan concentration in explants was measured with histology. Statistical analysis was performed using one-way analysis of variance and Tukey-Kramer multiple comparison test. RESULTS: The treatment of chondrocytes with IL-1B resulted in upregulated expression of ADAM-TS4, MMP3, MMP9, and IL-6, while simultaneous administration of IL-1B and CCEF led to a relative decrease in ADAM-TS4, MMP3, MMP9, and IL-6 expression and a relative increase in TIMP1 and TIMP2 expression. Application of IL-1B and CCEF to the explants resulted in decreased expression of MMP3 and increased expression of Aggrecan, Collagen-2, and TIMP1 when compared to application of IL-1B alone. CONCLUSION: The data indicate that application of a CCEF with verified uniformity may result in upregulation of cartilage anabolic factors even in the presence of IL-1B while attenuating IL-1B induced upregulation of catabolic factors in both monolayer culture and whole tissue. These results demonstrate the potential of CCEFs to suppress the progression of OA and regenerate articular cartilage matrix.

12.
ALTEX ; 39(3): 427­441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258089

RESUMO

Although osteoarthritis (OA) is the most prevalent human joint disease with a large socioeconomic burden, it remains a neglected disease with no clinically approved disease modifying therapies. One of the key reasons for this is that the available disease models poorly recapitulate human OA-like traits, possibly because of the challenge of mimicking the disease in an ECM-rich cartilage tissue. In this study, we report the establishment and validation of a clinically relevant ex vivo OA model using IL1ß-treated goat articular cartilage explants. Treatment with IL1ß induced OA-like traits in goat cartilage explants and caused a shift in cartilage homeostasis towards enhanced catabolism, resulting in higher matrix degradation, overexpression of degradative and inflammatory mediators, and chondrocyte hypertrophy. We then validated the developed disease model for drug response using the drugs celecoxib, BMP7, and rapamycin, all of which demonstrated concentration-dependent disease amelioration in the model. Finally, we evaluated the translational relevance of the developed ex vivo OA model by comparing it with late-stage OA patient samples and observed a striking resemblance in terms of matrix degradation, expression of degradative enzymes, chondrocyte hypertrophy, and inflammation. Overall, the goat ex vivo OA model elicited a biological response to cytokine treatment that mirrors human OA-like traits and may reduce discordance between preclinical and clinical studies in OA drug development.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos , Avaliação Pré-Clínica de Medicamentos , Cabras , Humanos , Hipertrofia/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
13.
PeerJ ; 7: e6553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881764

RESUMO

BACKGROUND: Previous studies reported the effect of enrofloxacin (Enro) and marbofloxacin (Mar) on cell death and alteration of the key genes involved in catabolic and anabolic processes and demonstrated the beneficial effects of hyaluronan (HA) combined with fluoroquinolones (FQs) on primary canine chondrocytes. This study further determines the effects of these treatments on canine cartilage explants in both normal and interleukin-1 beta (IL-1ß)-stimulated conditions. METHODS: We examined sulfate glycosaminoglycan (s-GAG) release, uronic acid (UA) content, and safranin-O staining, as well as the expression patterns of inflammatory, extracellular matrix (ECM) component and enzymes. RESULTS: Enro treatment alone effectively stimulated proteoglycan anabolism by increasing UA content and glycosaminoglycans (GAGs) in normal and pre-IL-1ß-stimulated explant, whereas Mar showed opposite results. The combination of HA and FQs increased s-GAG release and UA content in normal explants in addition to effective down-regulated expression of MMP3. HA reduced the adverse effects of Mar by enhancing UA and GAG contents in both normal and pre-IL-1ß-explants. Moreover, HA effectively induced HAS1and ACANup-regulation and reduced MMP9, TNF, PTGS2,and NFKB1 expression for a long term. DISCUSSION: Our results suggest the direct effects of Enro and Mar may selectively stimulate the conditioned explants to express MMP-codinggenes and promote gene expression involved in matrix production, pro-inflammatory cytokines, and cell degradation in different directions. HA successfully reduced the adverse effects of FQs by enhancing s-GAG and UA contents and down-regulated expression of MMPs.

14.
Cell Biochem Biophys ; 76(1-2): 279-292, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28831668

RESUMO

Osteoarthritis is a degenerative joint disease in which interleukin-1ß plays a major role in the inflammatory process. Administration of collagen hydrolysate was an optional treatment of osteoarthritis. Fish has become an interesting source of collagen hydrolysate because of religious reason and there is no risk from mad cow disease. However, the effects of different sizes of fish collagen hydrolysate on cartilage and chondrocyte metabolism have not been well studied yet. This study examined the effect of different sizes of fish collagen hydrolysate on cartilage metabolism. Three different sizes of fish collagen hydrolysate were prepared by size exclusion using centrifugation, which composed of small fraction (<3 kDa), medium fraction (3-10 kDa) and large fraction (>10 kDa). Using porcine cartilage explant, in physiological condition, all the three fractions had no effect on cartilage metabolism, but they could induce pro-MMP3 and pro-MMP13 secretions through activation of p-ERK and p-p38. In pathological condition induced by interleukin-1ß and oncostatin-M, small and medium fractions showed additive effect with interleukin-1ß and oncostatin-M on cartilage degradation, whereas large size had no effect. In addition, the effect of small size occurred through further activation of p-p65, which resulted in further induction of active-MMP13, while medium size had a different mechanism. In conclusion, all three fractions fish collagen hydrolysate had no effect on cartilage metabolism in physiological condition, but small and medium fractions had adverse effect on cartilage in pathological condition. Taken together, various sizes of fish collagen hydrolysate showed different effects on cartilage metabolism. Therefore, different sizes of fish collagen hydrolysates play different roles on cartilage metabolism, especially in the pathological condition.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Colágeno/farmacologia , Proteínas de Peixes/farmacologia , Peixes/metabolismo , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno/química , Colágeno/isolamento & purificação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/isolamento & purificação , Humanos , Técnicas In Vitro , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Oncostatina M/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
J Pharm Pharmacol ; 66(7): 1021-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24697299

RESUMO

OBJECTIVES: To study the chondroprotective and anti-inflammatory potential of inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea (SMT) in in-vitro model. METHODS: Rabbit cartilage explants were stimulated with recombinant human interleukin 1ß (rhIL-1ß), and the chondroprotective and anti-inflammatory effects of SMT were investigated. Rat synovial explants were stimulated with LPS, and the anti-inflammatory effect of SMT on synovium was studied. To examine the role of SMT in synovial inflammation mediated cartilage damage, LPS stimulated synovial explants were cultured with dead cartilage with or without SMT for 72 h. The culture medium was analysed for sulfated glycosaminoglycans (GAGs) and hydroxyproline as measure of proteoglycans and collagen degradation, respectively. KEY FINDINGS: SMT significantly reduced GAGs, hydroxyproline, matrix metalloproteinase (MMP)-13, tumour necrosis factor alpha (TNF-α), prostaglindin E2 (PGE2 ) and nitrite release in stimulated rabbit cartilage media indicating chondroprotective and anti-inflammatory effects of SMT in osteoarthritis (OA). Stimulated synovial explants caused release of nitrite, PGE2 , IL-1ß and TNF-α in the medium which were significantly reduced by SMT indicating its anti-inflammatory action. SMT significantly reduced GAGs and hydroxyproline in medium and shown protective effect against synovium-mediated cartilage damage. CONCLUSIONS: SMT inhibited cartilage degradation, synovial inflammation and synovium-mediated cartilage damage, suggesting that SMT may be an agent for pharmacological intervention in OA.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Isotiurônio/análogos & derivados , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Membrana Sinovial/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glicosaminoglicanos/metabolismo , Humanos , Hidroxiprolina/metabolismo , Técnicas In Vitro , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Isotiurônio/farmacologia , Isotiurônio/uso terapêutico , Lipopolissacarídeos , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Nitritos/metabolismo , Osteoartrite/metabolismo , Coelhos , Ratos , Ratos Wistar , Membrana Sinovial/metabolismo
16.
Matrix Biol ; 39: 56-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25179675

RESUMO

Our friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.


Assuntos
Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Proteoma/metabolismo , Animais , Biomarcadores/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA