Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126016

RESUMO

A thorough characterization of induced pluripotent stem cells (iPSCs) used with in vitro models or therapeutics is essential. Even iPSCs derived from a single donor can exhibit variability within and between cell lines, which can lead to heterogeneity in results and hinder the promising future of cell replacement therapies. In this study, the cell seeding density of human and rhesus monkey iPSCs was tested to maximize the cell line-specific yield of the generated cardiomyocytes. We found that, despite using the same iPSC generation and differentiation protocols, the cell seeding density for the cell line-specific best differentiation efficiency could differ by a factor of four for the four cell lines used here. In addition, the cell lines showed differences in the range of cell seeding densities that they could tolerate without the severe loss of differentiation efficiency. Overall, our data show that the cell seeding density is a critical parameter for the differentiation inefficiency of primate iPSCs to cardiomyocytes and that iPSCs generated with the same episomal approach still exhibit considerable heterogeneity. Therefore, individual characterization of iPSC lines is required, and functional comparability with in vivo processes must be ensured to warrant the translatability of in vitro research with iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Macaca mulatta , Miócitos Cardíacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Humanos , Animais , Linhagem Celular , Contagem de Células , Técnicas de Cultura de Células/métodos , Células Cultivadas
2.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894531

RESUMO

BACKGROUND: Whey protein isolate (WPI) is a by-product from the dairy industry, whose main component is ß-lactoglobulin. Upon heating, WPI forms a hydrogel which can both support controlled drug delivery and enhance the proliferation and osteogenic differentiation of bone-forming cells. This study makes a novel contribution by evaluating the ability of WPI hydrogels to support the growth of endothelial cells, which are essential for vascularization, which in turn is a pre-requisite for bone regeneration. METHODS: In this study, the proliferation and antioxidant levels in human umbilical vascular endothelial cells (HUVECs) cultured with WPI supplementation were evaluated using real-time cell analysis and flow cytometry. Further, the attachment and growth of HUVECs seeded on WPI-based hydrogels with different concentrations of WPI (15%, 20%, 30%, 40%) were investigated. RESULTS: Supplementation with WPI did not affect the viability or proliferation of HUVECs monitored with real-time cell analysis. At the highest used concentration of WPI (500 µg/mL), a slight induction of ROS production in HUVECs was detected as compared with control samples, but it was not accompanied by alterations in cellular thiol levels. Regarding WPI-based hydrogels, HUVEC adhered and spread on all samples, showing good metabolic activity. Notably, cell number was highest on samples containing 20% and 30% WPI. CONCLUSIONS: The demonstration of the good compatibility of WPI hydrogels with endothelial cells in these experiments is an important step towards promoting the vascularization of hydrogels upon implantation in vivo, which is expected to improve implant outcomes in the future.


Assuntos
Células Endoteliais , Osteogênese , Humanos , Proteínas do Soro do Leite/farmacologia , Hidrogéis/farmacologia , Diferenciação Celular , Alicerces Teciduais
3.
Cell Tissue Bank ; 23(2): 313-324, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34251541

RESUMO

Tissue engineering is a promising technique for the repair of bone defects. An efficient and homogeneous distribution of cell seeding into scaffold is a crucial but challenging step in the technique. Murine bone marrow mesenchymal stem cells were seeded into porous hydroxyapatite scaffolds of two morphologies by three methods: static seeding, semi-dynamic seeding, or dynamic perfusion seeding. Seeding efficiency, survival, distribution, and proliferation were quantitatively evaluated. To investigate the performance of the three seeding methods for larger/thicker scaffolds as well as batch seeding of numerous scaffolds, three scaffolds were stacked to form assemblies, and seeding efficiencies and cell distribution were analyzed. The semi-dynamic seeding and static seeding methods produced significantly higher seeding efficiencies, vitalities, and proliferation than did the dynamic perfusion seeding. On the other hand, the semi-dynamic seeding and dynamic perfusion seeding methods resulted in more homogeneous cell distribution than did the static seeding. For stacked scaffold assemblies, the semi-dynamic seeding method also created superior seeding efficiency and longitudinal cell distribution homogeneity. The semi-dynamic seeding method combines the high seeding efficiency of static seeding and satisfactory distribution homogeneity of dynamic seeding while circumventing their disadvantages. It may contribute to improved outcomes of bone tissue engineering.


Assuntos
Durapatita , Células-Tronco Mesenquimais , Animais , Osso e Ossos , Células Cultivadas , Camundongos , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743073

RESUMO

Functional endothelial cells (EC) are a critical interface between blood vessels and the thrombogenic flowing blood. Disruption of this layer can lead to early thrombosis, inflammation, vessel restenosis, and, following coronary (CABG) or peripheral (PABG) artery bypass graft surgery, vein graft failure. Blood-derived ECs have shown potential for vascular tissue engineering applications. Here, we show the development and preliminary testing of a method for deriving porcine endothelial-like cells from blood obtained under clinical conditions for use in translational research. The derived cells show cobblestone morphology and expression of EC markers, similar to those seen in isolated porcine aortic ECs (PAEC), and when exposed to increasing shear stress, they remain viable and show mRNA expression of EC markers similar to PAEC. In addition, we confirm the feasibility of seeding endothelial-like cells onto a decellularised human vein scaffold with approximately 90% lumen coverage at lower passages, and show that increasing cell passage results in reduced endothelial coverage.


Assuntos
Células Endoteliais , Engenharia Tecidual , Animais , Prótese Vascular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Veia Safena , Estresse Mecânico , Suínos , Engenharia Tecidual/métodos
5.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328732

RESUMO

Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton's jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Remodelação Vascular , Células Alógenas , Animais , Prótese Vascular , Artérias Carótidas , Bovinos , Humanos , Hiperplasia , Pericárdio , Ovinos , Suínos , Engenharia Tecidual
6.
J Transl Med ; 15(1): 3, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28049497

RESUMO

BACKGROUND: The repair of urinary bladder tissue is a necessity for tissue loss due to cancer, trauma, or congenital abnormalities. Use of intestinal tissue is still the gold standard in the urological clinic, which leads to new problems and dysfunctions like mucus production, stone formation, and finally malignancies. Therefore, the use of artificial, biologically derived materials is a promising step towards the augmentation of this specialised tissue. The aim of this study was to investigate potential bladder wall repair by two collagen scaffold prototypes, OptiMaix 2D and 3D, naïve and seeded with autologous vesical cells, as potential bladder wall substitute material in a large animal model. METHODS: Six Göttingen minipigs underwent cystoplastic surgery for tissue biopsy and cell isolation followed by implantation of unseeded scaffolds. Six weeks after the first operation, scaffolds seeded with the tissue cultured autologous urothelial and detrusor smooth muscle cells were implanted into the bladder together with additional unseeded scaffolds for comparison. Cystography and bladder ultrasound were performed to demonstrate structural integrity and as leakage test of the implantation sites. Eighteen, 22, and 32 weeks after the first operation, two minipigs respectively were sacrificed and the urinary tract was examined via different (immunohistochemical) staining procedures and the usage of two-photon laser scanning microscopy. RESULTS: Both collagen scaffold prototypes in vivo had good ingrowth capacity into the bladder wall including a quick lining with urothelial cells. The ingrowth of detrusor muscle tissue, along with the degradation of the scaffolds, could also be observed throughout the study period. CONCLUSIONS: We could show that the investigated collagen scaffolds OptiMaix 2D and 3D are a potential material for bladder wall substitution. The material has good biocompatible properties, shows a good cell growth of autologous cells in vitro, and a good integration into the present bladder tissue in vivo.


Assuntos
Colágeno/química , Alicerces Teciduais/química , Bexiga Urinária/cirurgia , Animais , Feminino , Fluorescência , Imuno-Histoquímica , Implantes Experimentais , Modelos Animais , Miócitos de Músculo Liso/citologia , Suínos , Porco Miniatura , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Micção , Urotélio/citologia
7.
FASEB J ; 30(7): 2627-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059717

RESUMO

Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-ß receptor 1 (TGF-ßR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-ßR1 inhibition on the host monocytes. Biodegradable TEVGs were implanted as inferior vena cava interposition conduits in 2 groups of C57BL/6 mice (n = 25/group): unseeded grafts and unseeded grafts with TGF-ßR1 inhibitor systemic treatment for the first 2 wk. The TGF-ßR1 inhibitor treatment effectively improved TEVG patency at 6 mo compared to the untreated control group (91.7 vs. 48%, P < 0.001), which is associated with a reduction in classic activation of mononuclear phagocytes. Consistent with these findings, the addition of rTGF-ß to LPS/IFN-γ-stimulated monocytes enhanced secretion of inflammatory cytokines TNF-α, IL-12, and IL-6; this effect was blocked by TGF-ßR1 inhibition (P < 0.0001). These findings suggest that the TGF-ß signaling pathway contributes to TEVG stenosis by inducing classic activation of host monocytes. Furthermore, blocking monocyte activation by TGF-ßR1 inhibition provides a viable strategy for preventing TEVG stenosis while maintaining neotissue formation.-Lee, Y.-U., de Dios Ruiz-Rosado, J., Mahler, N., Best, C. A., Tara, S., Yi, T., Shoji, T., Sugiura, T., Lee, A. Y., Robledo-Avila, F., Hibino, N., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. TGF-ß receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.


Assuntos
Leucócitos Mononucleares/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Prótese Vascular , Constrição Patológica , Citocinas/genética , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento Transformadores beta/genética , Engenharia Tecidual , Alicerces Teciduais
8.
Cell Commun Signal ; 15(1): 44, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29052507

RESUMO

BACKGROUND: Vascular progenitor cells (VPCs) derived from embryonic stem cells (ESCs) are a valuable source for cell- and tissue-based therapeutic strategies. During the optimization of endothelial cell (EC) inductions from mouse ESCs using our staged and chemically-defined induction methods, we found that cell seeding density but not VEGF treatment between 10 ng/mL and 40 ng/mL was a significant variable directing ESCs into FLK1+ VPCs during stage 1 induction. Here, we examine potential contributions from cell-to-cell signaling or cellular metabolism in the production of VPCs from ESCs seeded at different cell densities. METHODS: Using 1D 1H-NMR spectroscopy, transcriptomic arrays, and flow cytometry, we observed that the density-dependent differentiation of ESCs into FLK1+ VPCs positively correlated with a shift in metabolism and cellular growth. RESULTS: Specifically, cell differentiation correlated with an earlier plateauing of exhaustive glycolysis, decreased lactate production, lower metabolite consumption, decreased cellular proliferation and an increase in cell size. In contrast, cells seeded at a lower density of 1,000 cells/cm2 exhibited increased rates of glycolysis, lactate secretion, metabolite utilization, and proliferation over the same induction period. Gene expression analysis indicated that high cell seeding density correlated with up-regulation of several genes including cell adhesion molecules of the notch family (NOTCH1 and NOTCH4) and cadherin family (CDH5) related to vascular development. CONCLUSIONS: These results confirm that a distinct metabolic phenotype correlates with cell differentiation of VPCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Animais , Contagem de Células , Linhagem Celular , Células Endoteliais/citologia , Camundongos , Transdução de Sinais
9.
Biomed Microdevices ; 18(5): 88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27613401

RESUMO

This study demonstrates a rapid prototyping approach for fabricating and integrating porous hollow fibers (HFs) into microfluidic device. Integration of HF can enhance mass transfer and recapitulate tubular shapes for tissue-engineered environments. We demonstrate the integration of single or multiple HFs, which can give the users the flexibility to control the total surface area for tissue development. We also present three microfluidic designs to enable different co-culture conditions such as the ability to co-culture multiple cell types simultaneously on a flat and tubular surface, or inside the lumen of multiple HFs. Additionally, we introduce a pressurized cell seeding process that can allow the cells to uniformly adhere on the inner surface of HFs without losing their viabilities. Co-cultures of lung epithelial cells and microvascular endothelial cells were demonstrated on the different platforms for at least five days. Overall, these platforms provide new opportunities for co-culturing of multiple cell types in a single device to reconstruct native tissue micro-environment for biomedical and tissue engineering research.


Assuntos
Técnicas de Cocultura/instrumentação , Dispositivos Lab-On-A-Chip , Linhagem Celular , Humanos , Integração de Sistemas
10.
Biotechnol Bioeng ; 113(10): 2275-85, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27071026

RESUMO

Current cell seeding techniques focus on passively directing cells to a scaffold surface with the addition of dynamic culture to encourage cell permeation. In 3D tissue engineered constructs, cell retention efficiency is dependent on the cell delivery method, and biomaterial properties. Passive cell delivery relies on cell migration to the scaffold surface; biomaterial surface properties and porosity determine cell infiltration capacity. As a result, cell retention efficiencies remain low. The development of an effective two-stage cell seeding technique, coupled with perfusion culture, provides the potential to improve cellularization efficiency, and retention. This study, uses a chitosan bioengineered open ventricle (BEOV) scaffold to produce a two-stage perfusion cultured ventricle (TPCV). TPCV were fabricated by direct injection of 10 million primary rat neonatal cardiac cells, followed by wrapping of the outer scaffold surface with a 3D fibrin gel artificial heart muscle patch; TPCV were perfusion cultured for 3 days. The average biopotential output was 1.731 mV. TPCV cell retention following culture was approximately 5%. Cardiac cells were deposited on the scaffold surface and formed intercellular connections. Histological assessment displayed localized cell clusters, with some dissemination, and validated the observed presence of intercellular and gap-junction interactions. The study demonstrates initial effectiveness of our two-stage cell delivery concept, based on function and biological metrics. Biotechnol. Bioeng. 2016;113: 2275-2285. © 2016 Wiley Periodicals, Inc.


Assuntos
Ventrículos do Coração/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos/instrumentação , Impressão Tridimensional/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Animais Recém-Nascidos , Células Cultivadas , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Técnicas de Cultura de Órgãos/métodos , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
11.
Pathologe ; 37(Suppl 2): 196-203, 2016 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-27613302

RESUMO

The article describes the tumorigenesis of bladder cancer from a pathological perspective in three dimensions: morphology, genetics and epigenetics. Field cancerization and tumor cell migration/seeding are the two main hypotheses used for explaining synchronous and metachronous tumors in the urinary tract. By detailed histological mapping of completely embedded cystectomy specimens we found a single tumor focus in nearly 2/3 of the bladders accompanied by surrounding preinvasive carcinoma in situ. We substantiated our findings by studies analyzing TP53 mutations and loss of heterozygosity in various tumor sites. Identical TP53 mutations suggested a clonal relationship of the tumor foci. In situ lineage tracing via cytochrome C oxidase and succinate dehydrogenase enzyme histochemistry and subsequent mitochondrial DNA mutation analysis for definitive evidence of a clonal relationship in bladder tumors remained inconclusive. We found indications for both theories but intraurothelial migration/seeding was more prominent.A further mechanism in tumorigenesis is gene inactivation by epigenetic DNA methylation. We analyzed DNA methylation of various genes, which had previously been found by RNA expression analysis to be downregulated in bladder cancer. Most importantly, epigenetically silenced ITIH5 was associated with early relapse in pT1 high grade tumors and functionally showed an enhanced invasive metastatic phenotype in tumor cells, suggesting a putative tumor suppressive role. Thus, epigenetic gene silencing is an additional mechanism of tumorigenesis especially in tumor progression.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma in Situ/cirurgia , Linhagem da Célula/genética , Movimento Celular/genética , Evolução Clonal/genética , Cistectomia , Metilação de DNA/genética , Análise Mutacional de DNA , Epigênese Genética/genética , Feminino , Humanos , Perda de Heterozigosidade , Inoculação de Neoplasia , Proteína Supressora de Tumor p53/genética , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia , Urotélio/patologia
12.
Int J Food Sci Nutr ; 66(6): 680-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26299896

RESUMO

The purpose of this study was to investigate the appropriate proportion of Caco-2 and HT29 co-culture in vitro cell models for permeability studies. The results showed that the transepithelial electrical resistance values of 9:1 and 1:0 groups (263 ± 3.61 and 300 ± 7.55) after 21-day culture were >250 Ω cm(2), which were suitable for further experiments. The confocal laser microscopy showed that the group of 9:1 (Caco-2:HT29) had the highest integrity, whereas the group of 0:1 (Caco-2:HT29) exhibited the lowest. The staining study confirmed that mucus was successfully produced by HT29 cells, and it was also produced in co-cultures with Caco-2 cells model, but the Caco-2 monocultures did not have any blue staining, which made us affirm that mucus is only produced in the presence of HT29 cells. The real-time PCR results showed that the total highest expression level of ALPi and MUC5AC was the ratio of 9:1 (Caco-2:HT29) and lowest is 1:1 (Caco-2:HT29). So we concluded that 9:1 (Caco-2:HT29) is the optimal Caco-2 to HT29 ratio in the in vitro model co-culture for permeability studies.


Assuntos
Fosfatase Alcalina/metabolismo , Regulação da Expressão Gênica/fisiologia , Mucina-5AC/metabolismo , Muco/metabolismo , Permeabilidade , Azul Alciano , Fosfatase Alcalina/genética , Células CACO-2 , Técnicas de Cocultura , Corantes , Impedância Elétrica , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HT29 , Humanos , Mucina-5AC/genética , Reação em Cadeia da Polimerase em Tempo Real , Coloração e Rotulagem
13.
Cell Tissue Bank ; 16(4): 605-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25795264

RESUMO

The purpose of this investigation was to compare different dynamic cell seeding methods regarding their seeding efficiency, homogeneity, infiltration depth and proliferation within a human acellular dermis. In addition, the growth behaviour was observed during a 12-day static in vitro culture. The dynamic methods included orbital-shaker seeding and the use of a plate centrifuge with different rotational speeds, combinations of low-pressure for matrix degassing and centrifugal seeding. Scaffolds were incubated for up to 12 days statically. Cell distribution and infiltration depth were analysed histologically at days 0, 4, 8 and 12. Seeding efficiency and cell proliferation were quantified with the MTT-assay at the same time points. Centrifugal seeding with 300g for 5 × 1 min combined with matrix degassing significantly increased the seeding efficiency and homogeneity compared to the other methods. However, following static culture, no cells were detectable after 4 days in the inner matrix zones. Furthermore, none of the degassing+centrifugation groups reached a significantly higher proliferation at day 8 compared to the reference. The use of a single dynamic method resulted in an inefficient cell seeding. We archived the highest seeding efficiency, homogeneity and infiltration depth using a combination of degassing+centrifugation at 300g for 5 × 1 min.


Assuntos
Derme Acelular , Técnicas de Cultura Celular por Lotes/métodos , Fibroblastos/citologia , Fibroblastos/fisiologia , Alicerces Teciduais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Sistema Livre de Células/química , Células Cultivadas , Fibroblastos/transplante , Humanos
14.
J Biomed Mater Res A ; 112(10): 1688-1698, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38602243

RESUMO

When delivering cells on a scaffold to treat a bone defect, the cell seeding technique determines the number and distribution of cells within a scaffold, however the optimal technique has not been established. This study investigated if human adipose-derived stem cells (ASCs) transduced with a lentiviral vector to overexpress bone morphogenetic protein 2 (BMP-2) and loaded on a scaffold using dynamic orbital shaker could reduce the total cell dose required to heal a critical sized bone defect when compared with static seeding. Human ASCs were loaded onto a collagen/biphasic ceramic scaffold using static loading and dynamic orbital shaker techniques, compared with our labs standard loading technique, and implanted into femoral defects of nude rats. Both a low dose and standard dose of transduced cells were evaluated. Outcomes investigated included BMP-2 production, radiographic healing, micro-computerized tomography, histologic assessment, and biomechanical torsional testing. BMP-2 production was higher in the orbital shaker cohort compared with the static seeding cohort. No statistically significant differences were noted in radiographic, histomorphometric, and biomechanical outcomes between the low-dose static and dynamic seeding groups, however the standard-dose static seeding cohort had superior biomechanical properties. The standard-dose 5 million cell dose standard loading cohort had superior maximum torque and torsional stiffness on biomechanical testing. The use of orbital shaker technique was labor intensive and did not provide equivalent biomechanical results with the use of fewer cells.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Terapia Genética , Ratos Nus , Alicerces Teciduais , Animais , Humanos , Proteína Morfogenética Óssea 2/genética , Alicerces Teciduais/química , Ratos , Terapia Genética/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Masculino , Fêmur/lesões , Fêmur/diagnóstico por imagem , Fêmur/patologia , Microtomografia por Raio-X , Fenômenos Biomecânicos
15.
ACS Biomater Sci Eng ; 10(1): 620-627, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38048415

RESUMO

Cell distribution is one of the primary factors that can affect cell morphology and behaviors, as it determines cell-cell interactions. Despite the importance of cell distribution, the seeding process of in vitro cell culture still highly relies on the traditional method using manual pipetting. Because manual pipetting cannot ensure a uniform cell distribution and has the possibility of compromising experimental reproducibility, an accurate and systemic seeding method that enables uniform cell seeding over versatile culture substrates is required. Here, we developed a perforated plate-based cell seeding device called the CellShower, which enabled uniform cell seeding over a large area of cell culture substrates. The working principles of the CellShower are based on the laminar filling flow and capillary force in microfluidics, and the design of the CellShower was optimized with numerical simulations. The versatility of the CellShower in view of uniform cell seeding was demonstrated by applying it to various types of culture substrates from a conventional culture dish to culture substrates having nanotopography, porous structures, and 3D concave structures. The CellShower and its operating principles are expected to contribute to enhancing the accuracy and reproducibility of biological experiments.


Assuntos
Técnicas de Cultura de Células , Reprodutibilidade dos Testes , Porosidade
16.
Methods Mol Biol ; 2783: 209-220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478235

RESUMO

Amniotic membrane, being part of the placenta, is discarded as medical waste after childbirth. It can be decellularized to convert it into an acellular material while retaining the extracellular matrix. Such amniotic membrane grafts support stem cell adhesion, growth, and proliferation. These properties make it a useful candidate to be used as a bio-scaffold in regenerative medicine. This chapter describes a method for the decellularization of the amniotic membrane. Furthermore, the method for seeding adipose-derived stem cells on the decellularized amniotic membrane is described.


Assuntos
Âmnio , Alicerces Teciduais , Adipócitos , Matriz Extracelular/metabolismo , Células-Tronco , Engenharia Tecidual/métodos
17.
Biomater Adv ; 153: 213532, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390561

RESUMO

Cell seeding via cell-laden hydrogels offers a rapid way of depositing cells onto a substrate or scaffold. When appropriately formulated, hydrogels provide a dense network of fibres for cellular encapsulation and attachment, creating a protective environment that prevents cells to be washed away by media. However, when incorporating hydrogels into a cell seeding strategy the cellular capacity for migration from a hydrogel network and subsequent biofunctionality must be assessed. Here, we compare cell seeding via a bioprinted hydrogel with conventional manual cell seeding in media. To this end, we use a binder jet 3D printed bioceramic scaffold as a model system for bone tissue engineering and the reactive jet impingement (ReJI) bioprinting system to deliver high cell density cell-laden hydrogels onto the surface of the scaffolds. The bioceramic scaffolds were produced in apatite-wollastonite (AW) glass-ceramic, with a total porosity of ~50 %, with pore size predominantly around 50-200 µm. Bone marrow-derived mesenchymal stromal cells were seeded onto the porous AW substrate both in media and via ReJI bioprinting. Cell seeding in media confirmed the osteoinductive nature and the ability of the scaffold to support cell migration within the porous structure. Cell seeding via ReJI bioprinting demonstrated that the cell-laden hydrogel penetrated the porous AW structure upon hydrogel deposition. Furthermore, cells would then migrate out from the hydrogel network and interact with the bioceramic substrate. Overall, levels of cell migration and mineralisation were significant and comparable for both seeding approaches. However, cell seeding via bioprinted hydrogels may serve as an effective strategy for in situ cell seeding into implants, which is desired in clinical tissue engineering procedures, avoiding the time taken for cell attachment from media, and the requirement to maintain a specific orientation until attachment has occurred.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Porosidade , Movimento Celular
18.
Asian J Surg ; 46(9): 3700-3704, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36732183

RESUMO

BACKGROUND/OBJECTIVE: The occurrence of iatrogenic tumor cell seeding (seeding) in needle tract scars formed by core needle biopsy (CNB) or vacuum-assisted biopsy (VAB) is well known. Some risk factors for seeding have been reported, but the clinicopathological risk factors and its prognosis have not been fully investigated. We evaluated the clinical features and prognosis of seeding. METHODS: We included 4405 patients who had undergone surgery (lumpectomy or mastectomy) with a diagnosis of breast cancer by preoperative CNB or VAB at our hospital between January 2012 and February 2021. Data of patients with confirmed presence of seeding in resected specimens were collected from pathological records. We analyzed the risk factors of seeding using logistic regression analysis and compared the ipsilateral breast tumor recurrence (IBTR) rate between cases based on the presence or absence of seeding in the lumpectomy group. RESULTS: Of the 4405 patients, 133 (3.0%) had confirmed seeding. Univariate analysis revealed the association of clinicopathological features of seeding with lower nuclear grade (NG1 vs NG2-3; p = 0.043), lower Ki-67 (<30 vs. ≥30; p = 0.049), estrogen receptor (ER) positivity (positive vs negative; p<0.01), and human epidermal growth factor receptor 2 (HER2) negativity (negative vs positive; p = 0.016). Multivariate analysis showed ER positivity (odds ratio, 5.23; p<0.05) as an independent risk factor of seeding. The IBTR rate was not significantly different between the seeding and non-seeding groups. CONCLUSIONS: Seeding was more likely to occur in ER positive, HER2 negative carcinomas with less aggressive features, and may remain subclinical if adequate adjuvant treatments are administered.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/cirurgia , Relevância Clínica , Mastectomia , Recidiva Local de Neoplasia/patologia , Biópsia com Agulha de Grande Calibre , Doença Iatrogênica
19.
J Biomater Appl ; 38(4): 548-561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37732423

RESUMO

The study aimed to evaluate an angiogenic effect of adipose-derived stem cells (ASCs) seeding and surgical prefabrication (placing a vascular pedicle inside the scaffold) on developed composite scaffolds made of poly-ε-caprolactone (PCL), ß-tricalcium phosphate (ß-TCP), and poly (lactic-co-glycolic acid) (PLGA) (PCL+ß-TCP+PLGA). Moreover, we aimed to compare our data with previously tested PCL scaffolds to assess whether the new material has better angiogenic properties. The study included 18 inbred male WAG rats. There were three scaffold groups (six animals each): with non-seeded PCL+ß-TCP+PLGA scaffolds, with PCL+ß-TCP+PLGA scaffolds seeded with ASCs and with PCL+ß-TCP+PLGA scaffolds seeded with ASCs and osteogenic-induced. Each rat was implanted with two scaffolds in the inguinal region (one prefabricated and one non-prefabricated). After 2 months from implantation, the scaffolds were explanted, and vessel density was determined by histopathological examination. Prefabricated ASC-seeded PCL+ß-TCP+PLGA scaffolds promoted greater vessel formation than non-seeded scaffolds (19.73 ± 5.46 vs 12.54 ± 0.81; p = .006) and those seeded with osteogenic-induced ASCs (19.73 ± 5.46 vs 11.87±2.21; p = .004). The developed composite scaffold promotes vessel formation more effectively than the previously described PCL scaffold.


Assuntos
Fosfatos de Cálcio , Alicerces Teciduais , Masculino , Ratos , Animais , Fosfatos de Cálcio/farmacologia , Adipócitos , Osteogênese , Células-Tronco
20.
J Biomech ; 153: 111589, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137273

RESUMO

The flow of cell suspension through a porous scaffold is a common process in dynamic cell seeding, which determines the initial distribution of cells for constructing tissue-engineered grafts. Physical insights into the transport and adhesion behaviors of cells in this process are of great significance to the precise control of cell density and its distribution in the scaffold. Revealing of dynamic mechanisms underlying these cell behaviors through experiments is still difficult. The numerical approach therefore plays an important role in such studies. However, existing studies have mostly focused on external factors (e.g., flow conditions and scaffold architecture) but ignored the intrinsic biomechanical properties of cells as well as their associated effects. The present work utilized a well-established mesoscopic model to simulate the dynamic cell seeding within a porous scaffold, based on which a thorough investigation of the effects of cell deformability and cell-scaffold adhesion strength on the seeding process was carried out. The results show that the increase in either the stiffness or the bond strength of cells would augment the firm-adhesion rate and thus enhance seeding efficiency. In comparison to cell deformability, bond strength seems to play a more dominant role. Especially in the cases with weak bond strength, remarkable losses of seeding efficiency and distribution uniformity are observed. Noteworthily, it is found that both the firm-adhesion rate and the seeding efficiency are quantiatively related to the adhesion strength which is measured as the detachment force, suggesting a straightforward way to estimate the seeding outcome.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA