Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.785
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35460644

RESUMO

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Camundongos , RNA Circular/genética , SARS-CoV-2/genética , Vacinas Sintéticas/genética , Vacinas de mRNA
2.
Cell ; 185(12): 2016-2034, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35584701

RESUMO

Most circular RNAs are produced from the back-splicing of exons of precursor mRNAs. Recent technological advances have in part overcome problems with their circular conformation and sequence overlap with linear cognate mRNAs, allowing a better understanding of their cellular roles. Depending on their localization and specific interactions with DNA, RNA, and proteins, circular RNAs can modulate transcription and splicing, regulate stability and translation of cytoplasmic mRNAs, interfere with signaling pathways, and serve as templates for translation in different biological and pathophysiological contexts. Emerging applications of RNA circles to interfere with cellular processes, modulate immune responses, and direct translation into proteins shed new light on biomedical research. In this review, we discuss approaches used in circular RNA studies and the current understanding of their regulatory roles and potential applications.


Assuntos
RNA Circular , RNA , Proteínas/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo
3.
Annu Rev Cell Dev Biol ; 38: 263-289, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609906

RESUMO

Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.


Assuntos
MicroRNAs , RNA Circular , Regulação da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/genética , RNA/metabolismo , RNA Circular/genética , RNA não Traduzido , RNA Viral , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
4.
Cell ; 176(4): 869-881.e13, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735636

RESUMO

Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture sequencing, we built the most comprehensive catalog of circRNA species to date: MiOncoCirc, the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic targets across cancer types.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias/genética , RNA/genética , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , RNA/metabolismo , RNA Circular , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodos
5.
Cell ; 177(4): 865-880.e21, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031002

RESUMO

Circular RNAs (circRNAs) produced from back-splicing of exons of pre-mRNAs are widely expressed, but current understanding of their functions is limited. These RNAs are stable in general and are thought to have unique structural conformations distinct from their linear RNA cognates. Here, we show that endogenous circRNAs tend to form 16-26 bp imperfect RNA duplexes and act as inhibitors of double-stranded RNA (dsRNA)-activated protein kinase (PKR) related to innate immunity. Upon poly(I:C) stimulation or viral infection, circRNAs are globally degraded by RNase L, a process required for PKR activation in early cellular innate immune responses. Augmented PKR phosphorylation and circRNA reduction are found in peripheral blood mononuclear cells (PBMCs) derived from patients with autoimmune disease systemic lupus erythematosus (SLE). Importantly, overexpression of the dsRNA-containing circRNA in PBMCs or T cells derived from SLE can alleviate the aberrant PKR activation cascade, thus providing a connection between circRNAs and SLE.


Assuntos
RNA Circular/metabolismo , RNA Circular/fisiologia , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Doenças Autoimunes/genética , Linhagem Celular , Endorribonucleases/metabolismo , Feminino , Humanos , Imunidade Inata/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Pessoa de Meia-Idade , Fosforilação , RNA/metabolismo , Splicing de RNA/genética , Estabilidade de RNA/fisiologia , RNA Circular/genética , RNA de Cadeia Dupla/metabolismo , Viroses/metabolismo , eIF-2 Quinase/imunologia
6.
Cell ; 174(2): 350-362.e17, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29887379

RESUMO

Noncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs-a long ncRNA, a circular RNA, and two microRNAs-using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more effective than previously described examples of target-directed microRNA degradation, which come primarily from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7-targeted mRNAs and enables accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as in neurons, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network.


Assuntos
Encéfalo/metabolismo , Redes Reguladoras de Genes , RNA não Traduzido/metabolismo , Animais , Citoplasma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Annu Rev Cell Dev Biol ; 35: 407-431, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31403819

RESUMO

A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.


Assuntos
Desenvolvimento Vegetal/genética , Plantas/genética , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
8.
Mol Cell ; 84(11): 2104-2118.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38761795

RESUMO

Circular RNAs (circRNAs) are stable RNAs present in cell-free RNA, which may comprise cellular debris and pathogen genomes. Here, we investigate the phenomenon and mechanism of cellular uptake and intracellular fate of exogenous circRNAs. Human myeloid cells and B cells selectively internalize extracellular circRNAs. Macrophage uptake of circRNA is rapid, energy dependent, and saturable. CircRNA uptake can lead to translation of encoded sequences and antigen presentation. The route of internalization influences immune activation after circRNA uptake, with distinct gene expression programs depending on the route of RNA delivery. Genome-scale CRISPR screens and chemical inhibitor studies nominate macrophage scavenger receptor MSR1, Toll-like receptors, and mTOR signaling as key regulators of receptor-mediated phagocytosis of circRNAs, a dominant pathway to internalize circRNAs in parallel to macropinocytosis. These results suggest that cell-free circRNA serves as an "eat me" signal and danger-associated molecular pattern, indicating orderly pathways of recognition and disposal.


Assuntos
Macrófagos , Fagocitose , RNA Circular , Transdução de Sinais , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Animais , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Linfócitos B/metabolismo , Linfócitos B/imunologia , Receptores Depuradores Classe A/metabolismo , Receptores Depuradores Classe A/genética , Apresentação de Antígeno , Pinocitose , Camundongos
9.
Mol Cell ; 82(9): 1768-1777.e3, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358469

RESUMO

Circular RNAs are garnering increasing interest as potential regulatory RNAs and a format for gene expression. The characterization of circular RNA using analytical techniques commonly employed in the literature, such as gel electrophoresis, can, under differing conditions, yield different results when attempting to distinguish circular RNA from linear RNA of similar molecular weights. Here, we describe circular RNA migration in different conditions, analyzed by gel electrophoresis and high-performance liquid chromatography (HPLC). We characterize key parameters that affect the migration pattern of circular RNA in gel electrophoresis systems, which include gel type, electrophoresis time, sample buffer composition, and voltage. Finally, we demonstrate the utility of orthogonal analytical tests for circular RNA that take advantage of its covalently closed structure to further distinguish circular RNA from linear RNA following in vitro synthesis.


Assuntos
RNA Circular , RNA , Eletroforese em Gel de Ágar/métodos , Peso Molecular , RNA/genética , RNA Circular/genética
10.
Mol Cell ; 81(20): 4300-4318.e13, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437836

RESUMO

The human genome encodes tens of thousands circular RNAs (circRNAs) with mostly unknown functions. Circular RNAs require internal ribosome entry sites (IRES) if they are to undergo translation without a 5' cap. Here, we develop a high-throughput screen to systematically discover RNA sequences that can direct circRNA translation in human cells. We identify more than 17,000 endogenous and synthetic sequences as candidate circRNA IRES. 18S rRNA complementarity and a structured RNA element positioned on the IRES are important for driving circRNA translation. Ribosome profiling and peptidomic analyses show extensive IRES-ribosome association, hundreds of circRNA-encoded proteins with tissue-specific distribution, and antigen presentation. We find that circFGFR1p, a protein encoded by circFGFR1 that is downregulated in cancer, functions as a negative regulator of FGFR1 oncoprotein to suppress cell growth during stress. Systematic identification of circRNA IRES elements may provide important links among circRNA regulation, biological function, and disease.


Assuntos
Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Circular/metabolismo , Subunidades Ribossômicas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Conformação de Ácido Nucleico , RNA Circular/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Subunidades Ribossômicas/genética , Relação Estrutura-Atividade
11.
Mol Cell ; 79(2): 268-279.e5, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32592682

RESUMO

Circular RNAs (circRNAs) are abundant and accumulate with age in neurons of diverse species. However, only few circRNAs have been functionally characterized, and their role during aging has not been addressed. Here, we use transcriptome profiling during aging and find that accumulation of circRNAs is slowed down in long-lived insulin mutant flies. Next, we characterize the in vivo function of a circRNA generated by the sulfateless gene (circSfl), which is consistently upregulated, particularly in the brain and muscle, of diverse long-lived insulin mutants. Strikingly, lifespan extension of insulin mutants is dependent on circSfl, and overexpression of circSfl alone is sufficient to extend the lifespan. Moreover, circSfl is translated into a protein that shares the N terminus and potentially some functions with the full-length Sfl protein encoded by the host gene. Our study demonstrates that insulin signaling affects global circRNA accumulation and reveals an important role of circSfl during aging in vivo.


Assuntos
Drosophila/fisiologia , Insulina/fisiologia , Longevidade/genética , RNA Circular/fisiologia , Envelhecimento , Animais , Animais Geneticamente Modificados , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Masculino , Mutação , Neurônios/fisiologia , Sulfotransferases/genética , Transcriptoma
12.
Trends Genet ; 39(12): 897-907, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839990

RESUMO

Numerous circular RNAs (circRNAs) produced from back-splicing of exon(s) have been recently revealed on a genome-wide scale across species. Although generally expressed at a low level, some relatively abundant circRNAs can play regulatory roles in various biological processes, prompting continuous profiling of circRNA in broader conditions. Over the past decade, distinct strategies have been applied in both transcriptome enrichment and bioinformatic tools for detecting and quantifying circRNAs. Understanding the scope and limitations of these strategies is crucial for the subsequent annotation and characterization of circRNAs, especially those with functional potential. Here, we provide an overview of different transcriptome enrichment, deep sequencing and computational approaches for genome-wide circRNA identification, and discuss strategies for accurate quantification and characterization of circRNA.


Assuntos
RNA Circular , RNA , RNA Circular/genética , RNA/genética , Transcriptoma , Biologia Computacional , Genoma/genética
13.
RNA ; 30(6): 728-738, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38485192

RESUMO

Transcriptomics analyses play pivotal roles in understanding the complex regulatory networks that govern cellular processes. The abundance of rRNAs, which account for 80%-90% of total RNA in eukaryotes, limits the detection and investigation of other transcripts. While mRNAs and long noncoding RNAs have poly(A) tails that are often used for positive selection, investigations of poly(A)- RNAs, such as circular RNAs, histone mRNAs, and small RNAs, typically require the removal of the abundant rRNAs for enrichment. Current approaches to deplete rRNAs for downstream molecular biology investigations are hampered by restrictive RNA input masses and high costs. To address these challenges, we developed rRNA Removal by RNaseH (rRRR), a method to efficiently deplete rRNAs from a wide range of human, mouse, and rat RNA inputs and of varying qualities at a cost 10- to 20-fold cheaper than other approaches. We used probe-based hybridization and enzymatic digestion to selectively target and remove rRNA molecules while preserving the integrity of non-rRNA transcripts. Comparison of rRRR to two commercially available approaches showed similar rRNA depletion efficiencies and comparable off-target effects. Our developed method provides researchers with a valuable tool for investigating gene expression and regulatory mechanisms across a wide range of biological systems at an affordable price that increases the accessibility for researchers to enter the field, ultimately advancing our understanding of cellular processes.


Assuntos
RNA Ribossômico , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Animais , Humanos , Camundongos , Ratos , Ribonuclease H/metabolismo , Ribonuclease H/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38324624

RESUMO

Connections between circular RNAs (circRNAs) and microRNAs (miRNAs) assume a pivotal position in the onset, evolution, diagnosis and treatment of diseases and tumors. Selecting the most potential circRNA-related miRNAs and taking advantage of them as the biological markers or drug targets could be conducive to dealing with complex human diseases through preventive strategies, diagnostic procedures and therapeutic approaches. Compared to traditional biological experiments, leveraging computational models to integrate diverse biological data in order to infer potential associations proves to be a more efficient and cost-effective approach. This paper developed a model of Convolutional Autoencoder for CircRNA-MiRNA Associations (CA-CMA) prediction. Initially, this model merged the natural language characteristics of the circRNA and miRNA sequence with the features of circRNA-miRNA interactions. Subsequently, it utilized all circRNA-miRNA pairs to construct a molecular association network, which was then fine-tuned by labeled samples to optimize the network parameters. Finally, the prediction outcome is obtained by utilizing the deep neural networks classifier. This model innovatively combines the likelihood objective that preserves the neighborhood through optimization, to learn the continuous feature representation of words and preserve the spatial information of two-dimensional signals. During the process of 5-fold cross-validation, CA-CMA exhibited exceptional performance compared to numerous prior computational approaches, as evidenced by its mean area under the receiver operating characteristic curve of 0.9138 and a minimal SD of 0.0024. Furthermore, recent literature has confirmed the accuracy of 25 out of the top 30 circRNA-miRNA pairs identified with the highest CA-CMA scores during case studies. The results of these experiments highlight the robustness and versatility of our model.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , RNA Circular/genética , Funções Verossimilhança , Redes Neurais de Computação , Neoplasias/genética , Biologia Computacional/métodos
15.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426324

RESUMO

Emerging clinical evidence suggests that sophisticated associations with circular ribonucleic acids (RNAs) (circRNAs) and microRNAs (miRNAs) are a critical regulatory factor of various pathological processes and play a critical role in most intricate human diseases. Nonetheless, the above correlations via wet experiments are error-prone and labor-intensive, and the underlying novel circRNA-miRNA association (CMA) has been validated by numerous existing computational methods that rely only on single correlation data. Considering the inadequacy of existing machine learning models, we propose a new model named BGF-CMAP, which combines the gradient boosting decision tree with natural language processing and graph embedding methods to infer associations between circRNAs and miRNAs. Specifically, BGF-CMAP extracts sequence attribute features and interaction behavior features by Word2vec and two homogeneous graph embedding algorithms, large-scale information network embedding and graph factorization, respectively. Multitudinous comprehensive experimental analysis revealed that BGF-CMAP successfully predicted the complex relationship between circRNAs and miRNAs with an accuracy of 82.90% and an area under receiver operating characteristic of 0.9075. Furthermore, 23 of the top 30 miRNA-associated circRNAs of the studies on data were confirmed in relevant experiences, showing that the BGF-CMAP model is superior to others. BGF-CMAP can serve as a helpful model to provide a scientific theoretical basis for the study of CMA prediction.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , RNA Circular/genética , Curva ROC , Aprendizado de Máquina , Algoritmos , Biologia Computacional/métodos
16.
EMBO Rep ; 25(7): 3008-3039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831125

RESUMO

The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.


Assuntos
Ácido Glutâmico , MicroRNAs , Neurônios , Transmissão Sináptica , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Neurônios/metabolismo , Camundongos , Ácido Glutâmico/metabolismo , Transmissão Sináptica/genética , Plasticidade Neuronal/genética , RNA Circular/genética , RNA Circular/metabolismo , Sinapses/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , Células Cultivadas
17.
Mol Cell ; 71(3): 428-442, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057200

RESUMO

Covalently closed circular RNAs (circRNAs) are produced by precursor mRNA back-splicing of exons of thousands of genes in eukaryotes. circRNAs are generally expressed at low levels and often exhibit cell-type-specific and tissue-specific patterns. Recent studies have shown that their biogenesis requires spliceosomal machinery and can be modulated by both cis complementary sequences and protein factors. The functions of most circRNAs remain largely unexplored, but known functions include sequestration of microRNAs or proteins, modulation of transcription and interference with splicing, and even translation to produce polypeptides. However, challenges exist at multiple levels to understanding of the regulation of circRNAs because of their circular conformation and sequence overlap with linear mRNA counterparts. In this review, we survey the recent progress on circRNA biogenesis and function and discuss technical obstacles in circRNA studies.


Assuntos
RNA/genética , RNA/metabolismo , RNA/fisiologia , Processamento Alternativo , Animais , Éxons , Humanos , MicroRNAs/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Circular , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(13): e2215132120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36961927

RESUMO

Distant metastasis is a major contributor to cancer-related mortality. However, the role of circRNAs in this process remains unclear. Herein, we profiled the circRNA expression in a cohort of 68 colorectal carcinoma (CRC) primary tumors and their paired liver metastatic lesions. By overlapping with the TGFß-responsive circRNAs, circNEIL3 (hsa_circ_0001460) was identified as a TGFß-repressive and metastasis-related circRNA. Functionally, circNEIL3 effectively inhibited tumor metastasis in both and in vivo and in vivo models of various cancer types. Mechanistically, circNEIL3 exerts its metastasis-repressive function through its direct interaction with oncogenic protein, Y-box-binding protein 1 (YBX1), which consequently promotes the Nedd4L-mediated proteasomal degradation of YBX1. Importantly, circNEIL3 expression was negatively correlated to YBX1 protein level and metastatic tendency in CRC patient samples. Collectively, our findings indicate the YBX1-dependent antimetastatic function of circNEIL3 and highlight the potential of circNEIL3 as a biomarker and therapeutic option in cancer treatment.


Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
19.
Genes Dev ; 32(9-10): 639-644, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29773557

RESUMO

Circular RNAs (circRNAs) are generated from many protein-coding genes. Most accumulate in the cytoplasm, but how circRNA localization or nuclear export is controlled remains unclear. Using RNAi screening, we found that depletion of the Drosophila DExH/D-box helicase Hel25E results in nuclear accumulation of long (>800-nucleotide), but not short, circRNAs. The human homologs of Hel25E similarly regulate circRNA localization, as depletion of UAP56 (DDX39B) or URH49 (DDX39A) causes long and short circRNAs, respectively, to become enriched in the nucleus. These data suggest that the lengths of mature circRNAs are measured to dictate the mode of nuclear export.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Drosophila melanogaster/genética , RNA/genética , RNA/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Variação Genética , Células HeLa , Humanos , Transporte Proteico/genética , RNA Circular
20.
Genes Dev ; 32(9-10): 600-601, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802122

RESUMO

Circular RNAs (circRNAs) comprise a recently appreciated category of RNAs that are in high abundance and serve important biological functions. Although several discoveries have been made regarding the biogenesis and functions of circRNAs, their subcellular trafficking has remained largely unknown. In this issue of Genes & Development, Huang and colleagues (pp. 639-644) reported the first study of the nuclear export of circRNAs. Drosophila Hel25E and its human homologs, UAP56 and URH49, are required for nuclear export of circRNAs. Nuclear export of circRNAs is surprisingly length-dependent, and the length measurement mechanism was shown to be controlled by motifs in Hel25E and its homologs consisting of four amino acids.


Assuntos
RNA Helicases DEAD-box , RNA , Transporte Ativo do Núcleo Celular , Aminoácidos , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA