Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.025
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 548, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872106

RESUMO

Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.


Assuntos
Irrigação Agrícola , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Irrigação Agrícola/métodos , Fertilizantes , Bicarbonatos/metabolismo , Compostagem/métodos , Compostos de Potássio , Solo/química
2.
Appl Environ Microbiol ; 90(8): e0069524, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39078126

RESUMO

While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.


Assuntos
Compostagem , Transferência Genética Horizontal , Esterco/microbiologia , Esterco/virologia , Microbiologia do Solo , Bactérias/genética , Bactérias/efeitos dos fármacos , Animais , Metagenoma , Bovinos , Temperatura Alta , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Microbiota , Bacteriófagos/genética , Bacteriófagos/fisiologia
3.
Appl Environ Microbiol ; 90(4): e0175223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445903

RESUMO

Transcriptomic evidence is needed to determine whether composting is more effective than conventional stockpiling in mitigating the risk of resistome in livestock manure. The objective of this study is to compare composting and stockpiling for their effectiveness in reducing the risk of antibiotic resistance in beef cattle manure. Samples collected from the center and the surface of full-size manure stockpiling and composting piles were subject to metagenomic and metatranscriptomic analyses. While the distinctions in resistome between stockpiled and composted manure were not evident at the DNA level, the advantages of composting over stockpiling were evident at the transcriptomic level in terms of the abundance of antibiotic resistance genes (ARGs), the number of ARG subtypes, and the prevalence of high-risk ARGs (i.e., mobile ARGs associated with zoonotic pathogens). DNA and transcript contigs show that the pathogen hosts of high-risk ARGs included Escherichia coli O157:H7 and O25b:H4, Klebsiella pneumoniae, and Salmonella enterica. Although the average daily temperatures for the entire composting pile exceeded 55°C throughout the field study, more ARG and ARG transcripts were removed at the center of the composting pile than at the surface. This work demonstrates the advantage of composting over stockpiling in reducing ARG risk in active populations in beef cattle manure.IMPORTANCEProper treatment of manure before land application is essential to mitigate the spread of antibiotic resistance in the environment. Stockpiling and composting are two commonly used methods for manure treatment. However, the effectiveness of composting in reducing antibiotic resistance in manure has been debated. This work compared the ability of these two methods to reduce the risk of antibiotic resistance in beef cattle manure. Our results demonstrate that composting reduced more high-risk resistance genes at the transcriptomic level in cattle manure than conventional stockpiling. This finding not only underscores the effectiveness of composting in reducing antibiotic resistance in manure but also highlights the importance of employing RNA analyses alongside DNA analyses.


Assuntos
Compostagem , Esterco , Bovinos , Animais , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Antibacterianos/farmacologia , DNA
4.
Environ Sci Technol ; 58(17): 7367-7379, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644786

RESUMO

Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.


Assuntos
Compostagem , Óxido Nitroso , Óxido Nitroso/metabolismo , Bactérias/metabolismo
5.
Macromol Rapid Commun ; 45(7): e2300641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206571

RESUMO

Poly(lactic acid) (PLA) has garnered interest due to its low environmental footprint and ability to replace conventional polymers and be disposed of in industrial composting environments. Although PLA is compostable when subjected to a suitable set of conditions, its broader acceptance in industrial composting facilities has been affected adversely due to longer degradation timeframes than the readily biodegradable organic waste fraction. PLA must be fully exposed to thermophilic conditions for prolonged periods to biodegrade, which has restricted its adoption and hindered its acceptance in industrial composting facilities, negating its home composting potential. Thus, enhancing PLA biodegradation is crucial to expand its acceptance. PLA's biodegradability is investigated in a compost matrix under mesophilic conditions at 37 °C for 180 days by biostimulating the compost environment with skim milk, gelatin, and ethyl lactate to enhance the different stages of PLA biodegradation. The evolved CO2, number average molecular weight (Mn), and crystallinity evolution are tracked. To achieve a Mn ≲ 10 kDa for PLA, the biodegradation rate is accelerated by 15% by adding skim milk, 25% by adding gelatin, and 22% by adding ethyl lactate. This work shows potential techniques to help biodegrade PLA in home composting setting by adding biostimulants.


Assuntos
Gelatina , Lactatos , Poliésteres , Ácido Láctico
6.
Environ Res ; 244: 117858, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086500

RESUMO

The solid waste management (SWM) system is in a transitional phase in developing economies, and local municipalities and waste management companies are stepping toward integrating a waste treatment approach in the scheme of waste handling. However, there is an urgent need to explore cost-effective techniques, models, and potential revenue streams to sustain the state-run waste sector self-sufficiently. The proposed SWM model aims to support the local waste sector in Islamabad, the capital city of Pakistan, with 100% service area coverage to attain environmental and economic sustainability by defining dedicated waste collection streams to ensure quality material recovery under a cost-effective approach and modality. The innovative approach is applied to allocate the tonnage to various streams as per the city's current land use plan. The estimated/cost of the cleanliness services will be USD13.1 million per annum with an estimated per ton cost of USD 23. The establishment of the proposed material recovery facility (MRF) will process about 500 t/d of waste to produce 45 t/d compost and recover 130 t/d of recyclables. The environmentally friendly model saves 2.4 million tons of CO2‒eq/month from composting and recycling. The average economic potential from MRF and debris-crushing plants, including environmental benefit value, is calculated as USD 3.97 million annually. Recovery of services fee (70%) for various collection streams based on city land use and socio-economic conditions will generate revenue of USD 7.33 million annually. The total revenue will be USD 11.31 million (86% of total annual expenditures) to track the sector's self-sufficiency. To successfully reach the Sustainable Development Goals (SDGs) and Nationally Determined Contributions (NDCs), engaging the private sector from environmentally advanced economies to collaborate in the waste sector to enhance local technical capabilities is recommended.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Análise Custo-Benefício , Gerenciamento de Resíduos/métodos , Reciclagem , Cidades
7.
Environ Res ; 243: 117853, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070856

RESUMO

Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.


Assuntos
Carvão Vegetal , Compostagem , Gases de Efeito Estufa , Humanos , Gases de Efeito Estufa/análise , Amônia , Fertilizantes/análise , Volatilização , Nitrogênio/análise , Solo , Agricultura , Óxido Nitroso
8.
Environ Res ; 244: 117904, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092239

RESUMO

Deciphering the pivotal components of nutrient metabolism in compost is of paramount importance. To this end, ecoenzymatic stoichiometry, enzyme vector modeling, and statistical analysis were employed to explore the impact of exogenous ore improver on nutrient changes throughout the livestock composting process. The total phosphorus increased from 12.86 to 18.72 g kg-1, accompanied by a marked neutralized pH with ore improver, resulting in the Carbon-, nitrogen-, and phosphorus-related enzyme activities decreases. However, the potential C:P and N:P acquisition activities represented by ln(ßG + CB): ln(ALP) and ln(NAG): ln(ALP), were increased with ore improver addition. Based on the ecoenzymatic stoiometry theory, these changes reflect a decreasing trend in the relative P/N limitation, with pH and total phosphorus as the decisive factors. Our study showed that the practical employment of eco stoichiometry could benefit the manure composting process. Moreover, we should also consider the ecological effects from pH for the waste material utilization in sustainable agriculture.


Assuntos
Compostagem , Ecossistema , Animais , Esterco , Gado/metabolismo , Solo , Nitrogênio/análise , Carbono/metabolismo , Fósforo
9.
Environ Res ; 249: 118449, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354880

RESUMO

The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.


Assuntos
Compostagem , Compostagem/métodos , Microbiologia do Solo , RNA Ribossômico 16S/análise , Microbiota , Bactérias/classificação , Bactérias/genética , Solo/química
10.
Environ Res ; 252(Pt 4): 119151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754608

RESUMO

The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.


Assuntos
Compostagem , Eliminação de Resíduos Líquidos , Compostagem/métodos , Eliminação de Resíduos Líquidos/métodos , Microbiologia do Solo , Biodegradação Ambiental , Solo , Actinobacteria , Actinomadura , Streptomyces , Substâncias Húmicas
11.
Environ Res ; 245: 117944, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109952

RESUMO

Composting is a nature-based method used to stabilize organic matter and to transform nitrogen from animal farm manure or solid fraction of slurry (SFS). The use of composted material as source of nutrients for agriculture is limited by its potential to facilitate the propagation of biological hazards like pathogens and antibiotic-resistant bacteria and their associated antibiotic-resistance genes (ARG). We show here an experimental on-farm composting (one single batch) of pig SFS, performed under realistic conditions (under dry continental Mediterranean climate) for 280 days, and using two different bulking agents (maize straw and tree pruning residues) for the initial mixtures. The observed reduction in potentially pathogenic bacteria (80-90%) and of ARG loads (60-100%) appeared to be linked to variations in the microbiome composition occurring during the first 4 months of composting, and concurrent with the reduction of water-soluble ammonium and organic matter loads. Nitrification during the composting has also been observed for both composting piles. Similar patterns have been demonstrated at small scale and the present study stresses the fact that the removal can also occur at full scale. The results suggest that adequate composition of the starting material may accelerate the composting process and improve its global performance. While the results confirm the sanitization potential of composting, they also issue a warning to limit ARG loads in soils and in animal and human gut microbiomes, as the only way to limit their presence in foodstuffs and, therefore, to reduce consumers' exposure.


Assuntos
Compostagem , Microbiota , Animais , Antibacterianos/farmacologia , Bactérias/genética , Fazendas , Esterco/microbiologia , Nitrificação , Solo/química , Suínos
12.
Environ Res ; 248: 118333, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295977

RESUMO

The short-term composting based on corncob for preparing Pleurotus ostreatus cultivation medium originated from agricultural production practices and so lacked systematic investigation. In this study, the influences of a Dafen (15 mm, DFT) and Xiaofen (5 mm, XFT) initial particle size (IPS) of corncob on the microbial succession and compost quality were examined. Results demonstrated that XFT compost was better suited for mushroom cultivation due to its high biological efficiency of 70 % and the absence of contamination. The composting microbes differed significantly between the DFT and XFT composts. During composting, the genera of Bacillus, Acinetobacter, Lactobacillus, Streptomyces, and Paenibacillus were majorly found in the DFT compost, while Acinetobacter, Lactobacillus, Puccinia, Bacteroides, and Bacillus genera dominated the XFT compost. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that throughout the thermophilic phase, XFT compost had much greater relative abundances of sequences relevant to energy, carbohydrate, and amino acid metabolism than DFT compost. Analysis of network correlations and Mantel tests indicated that IPS reduction could increase microbial interactions. Overall, adjusting the IPS of corncob to 5 mm increased microbial interactions, improved compost quality, and thereby boosted the P. ostreatus yield. These findings will be pertinent in optimizing the composting process of cultivation medium for P. ostreatus.


Assuntos
Compostagem , Pleurotus , Zea mays , Tamanho da Partícula , Agricultura/métodos , Solo
13.
Appl Microbiol Biotechnol ; 108(1): 329, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727750

RESUMO

Xylanases are key biocatalysts in the degradation of the ß-1,4-glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-ß-xylanase belonging to glycosyl hydrolase family 10 (GH10). When xyl4 was expressed in Escherichia coli BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications. KEY POINTS: • A GH10 endo-1,4-ß-xylanase (Xyl4) was isolated from a compost metagenomic library • MATLAB's in-house functions were developed to identify the xylanase-producing clones • Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis.


Assuntos
Compostagem , Endo-1,4-beta-Xilanases , Escherichia coli , Metagenômica , Filogenia , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Metagenoma , Biblioteca Gênica , Microbiologia do Solo , Xilanos/metabolismo , Clonagem Molecular , Fermentação , Expressão Gênica , Simulação de Acoplamento Molecular
14.
Appl Microbiol Biotechnol ; 108(1): 177, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277012

RESUMO

In this study, the effects of inoculum ratio, substrate particle size and aeration rate on humic acid (HA) biosynthesis during aerobic composting of rice straw were investigated, respectively. The contents of total organic carbon, total nitrogen and HA, as well as lignocellulose degradation in the composting were evaluated, respectively. It is found that the maximal HA yield of 356.9 g kg-1 was obtained at an inoculum ratio of 20%, a substrate particle size of 0.83 mm and an aeration rate of 0.3 L·kg-1 DM min-1 in the process of composting. The changes of microbial communities and metabolic functions at different stages of the composting were also analyzed through high-throughput sequencing. The result demonstrates that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the dominant phyla and their relative abundance significantly varied over time (p < 0.05), and Rhizobium, Phenylobacterium, Pseudoxanthomonas and Paenibacillus were positively related to HA content in the compost. Furthermore, the metabolic function profiles of bacterial community indicate that these functional genes in carbohydrate metabolism and amino acid metabolism were involved in lignocellulose biodegradation and HA biosynthesis. This work may be conducive to explore new regulation strategy to improve bioconversion efficiency of agricultural residues to applicable biofertilizers. KEY POINTS: • Temperature, pH, TOC, TN and C/N caused a great influence on humic acids synthesis • The succession of the microbial community during the composting were evaluated • The metabolisms of carbohydrate and amino acids were involved in HA synthesis.


Assuntos
Compostagem , Oryza , Substâncias Húmicas , Oryza/microbiologia , Esterco/microbiologia , Bactérias/genética , Solo
15.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38409949

RESUMO

Equine farming generates a significant amount of waste, prompting the need for effective management. Composting enhanced by filamentous fungi holds promise for this purpose. This study focused on inoculating Aspergillus fumigatus isolates in composting horse bedding made with wood shavings (Pinus elliottii). The experiment lasted 90 days, with two treatment groups, control and inoculated, analyzing temperature, pH, electrical conductivity, total organic carbon and nitrogen content, and cellulose, hemicellulose, and lignin contents. Both treatments entered the thermophilic phase by the fourth day, reaching temperatures above 55°C and mesophilic maturation at 35 days (41 ± 0.2°C). The inoculated treatment exhibited higher electrical conductivity after 30 days and a more pronounced reduction in the total carbon content (42.85% vs. 38.29%) compared to the control. While there was no significant nitrogen difference, the inoculated treatment had a sharper reduction in carbon/nitrogen ratio, and cellulose and hemicellulose contents. Both treatments showed low coliform counts, no Salmonella sp., and reduced Strongyloides sp. larvae. Inoculating A. fumigatus in saturated horse bedding made from wood shavings improved compost quality, providing a possibility for sustainable equine farming waste treatment.


Assuntos
Compostagem , Cavalos , Animais , Madeira/química , Aspergillus fumigatus , Solo , Celulose , Nitrogênio/análise , Carbono
16.
Bioprocess Biosyst Eng ; 47(3): 403-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38421394

RESUMO

As a flocculant of sewage sludge, cationic polyacrylamide (CPAM) enters the environment with sludge and exists for a long time, posing serious threats to the environment. Due to the environmental friendliness and high efficiency in the process of organic solid waste treatment, hyperthermophilic composting (HTC) has received increasing attention. However, it is still unclear whether the HTC process can effectively remove CPAM from sludge. In this study, the effects of HTC and conventional thermophilic composting (CTC) on CPAM in sludge were compared and analyzed. At the end of HTC and CTC, the concentrations of CPAM were 278.96 mg kg-1 and 533.89 mg kg-1, respectively, and the removal rates were 72.17% and 46.61%, respectively. The coupling effect of thermophilic microorganisms and high temperature improved the efficiency of HTC and accelerated the biodegradation of CPAM. The diversity and composition of microbial community changed dramatically during HTC. Geobacillus, Thermobispora, Pseudomonas, Brevundimonas, and Bacillus were the dominant bacteria responsible for the high HTC efficiency. To our knowledge, this is the first study in which CPAM-containing sludge is treated using HTC. The ideal performance and the presence of key microorganisms revealed that HTC is feasible for the treatment of CPAM-containing sludge.


Assuntos
Resinas Acrílicas , Compostagem , Esgotos , Esgotos/microbiologia , Temperatura , Archaea , Aceleração , Solo
17.
J Environ Manage ; 356: 120638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518496

RESUMO

Microorganisms drive the degradation of organic matter thanks to their enzymatic versatility. However, the structure of lignocellulose poses a great challenge for the microbiota inhabiting a compost pile. Our purpose was to increase the biodegradability of vegetable waste in the early stages of the composting process by applying a microbial consortium with lignocelllulolytic capacity. For this, a previous screening was performed among the culturable microbiota from different composting processes to find inoculants with ligninocellulolytic activity. Selected strains were applied as a pure culture and as a microbial consortium. The starting material was composed of tomato plant and pruning remains mixed in a ratio (50:50 v/v), whose humidity was adjusted to around 65%. To determine the ability of both treatments to activate the biodegradation of the mixtures, moisture, organic matter, ash, C/N ratio, 4-day cumulative respirometric index (AT4) and degradation rates of cellulose, hemicellulose and lignin were evaluated. Subsequently, a real composting process was developed in which the performance of the microbial consortium was compared with the composting process without inoculum (control). According to our tests, three microbial strains (Bacillus safensis, Bacillus licheniformis and Fusarium oxysporum) were selected. The results showed that the application of the bacteria strains at low doses (104 CFU g-1 on the complete residual material of the pile) resulted in higher rates of lignocelullose degradation after 10 days of treatment compared to that observed after application of the fungus in pure culture or untreated controls. The implementation of the strategy described in this work resulted in obtaining compost with better agronomic quality than the uninoculated controls. Therefore, the application of this consortium could be considered as an interesting tool for bioactivation of lignocellulosic waste prior to the composting process.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , Celulose , Bactérias/metabolismo , Solo
18.
J Environ Manage ; 351: 119673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043316

RESUMO

Amending biochar or MnO2 is a common strategy to regulate humification during manure composting. However, how these additives affect the formation, spectrum characteristics (UV-vis, FTIR, EEM) of humic substances (HSs) in silkworm-excrement (SE) compost and their electron transfer capacities (ETC) remains unclear. Thus, the SE composting pilot separately added with 10% corncob biochar (CB) (w/w) and 0.5% MnO2 (w/w) was run to investigate the effects. The results revealed that adding 10% CB slightly affected the HA/FA (humic acids/fulvic acids) ratios, UV-vis and FTIR spectra of the final SE-compost HSs and EEM components in the FA, but remarkably improved fulvic-like (C1)/quinone-like (C3) substances and reduced humic-like (C2)/protein-like substances (C4) in the HA. Meanwhile, 0.5% MnO2 had a noticeable positive effect on the aromatization of SE-compost FA and HA but only weak impact on SUVAs and EEM components in these HSs except C4 in the FA. Moreover, 10% CB obviously reduced EAC/EDC of FA and HA in the final SE compost by 31.1%/22.0% and 19.7%/24.0%, while MnO2 improved EDC of these HSs by 6.5%/9.1% (FA/HA). These results showed MnO2 can be used as a useful amendment to enhance the promotion effect of SE-compost HA in the soil remediation other than CB. Further investigation is suggested to focus on the effects of adding MnO2 on SE-compost HSs enhancing soil remediation and its effect on ETC derived from other manure compost.


Assuntos
Bombyx , Carvão Vegetal , Compostagem , Animais , Substâncias Húmicas/análise , Esterco , Elétrons , Compostos de Manganês , Óxidos , Solo
19.
J Environ Manage ; 351: 119628, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070423

RESUMO

The aim of the study was to investigate the effect of the biochar (BC) dose on solvent extractable (Ctot) and freely dissolved (Cfree) polycyclic aromatic hydrocarbons (PAHs) content during co-composting. A significantly better reduction of Σ16 Ctot PAHs after 98 days occurred during composting with BC (for 1% of BC - 44% and for 5% of BC - 23%) than in the control (15%). Despite the relatively high reduction of Ctot PAHs in the experiment with 5% BC rate, the content of the PAHs was still the highest compared to other variants. Regarding Cfree PAHs, 5% rate of BC resulted in the best reduction of PAHs, while the 1% BC dose resulted in a lower reduction of Cfree than the control. For 1% BC, PAHs losses was more effective, and sequestration processes played a less significant role than in the experiment with 5% dose of BC. The total and dissolved organic carbon, and ash were predominantly responsible for Ctot and Cfree losses, and additionally pH for Cfree. The results of the experiment indicate that BC performs a crucial role in composting, affecting the Ctot and Cfree PAHs in the compost but the final effect strictly depends on the BC dose.


Assuntos
Compostagem , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Esgotos/química , Triticum , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Carvão Vegetal/química , Solo/química
20.
J Environ Manage ; 368: 122167, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39163668

RESUMO

Mitigating the environmental impact of composting by the reduction of greenhouse gases (N2O, CH4) and ammonia (NH3) emissions is a major challenge. To meet this challenge, the understanding of the relationships between composted substrates initial physicochemical parameters and gas emissions is essential. From a long-term perspective, it will allow to guide the recipe formulation of the initial mixture to be composted, with a view to reducing gas emissions during composting. This study gathered literature data targeting sewage sludge composting and performed statistical correlation analyses between cumulative gas emissions and the following parameters: sewage sludge, bulking agent and composted mixture initial physicochemical parameters (pH, dry matter, total carbon, total nitrogen, C/N), the dry mass ratio of sewage sludge to bulking agent and the duration of composting. The average values of cumulative emissions show a large variability: 1.37 ± 2.71 gC.kg initial mix DM-1, 0.13 ± 0.17 gN.kg initial mix DM-1 and 2.23 ± 2.79 gN.kg initial mix DM-1 for CH4, N2O and NH3 emissions respectively. Although the correlation analysis highlighted some significant interesting correlations between initial physicochemical parameters and gas emissions (p.value < 0.05), reliable multiparametric model could not fit the data, meaning that the actual literature data are not sufficient to explain most part of gas emissions. Among the most interesting relationships, the study showed that the dry matter of the composted mixture is negatively correlated to N2O emissions, while the ratio of sewage sludge to bulking agent and the duration of composting are positively correlated to N2O emissions. It was also shown that the pH of the bulking agent is positively correlated to NH3 emissions. Considering the large part of the emission variability that is not explained and the difficulty to link the correlation with their causality, it will be interesting to improve composting gas emissions knowledge in future research by analyzing free air space, bulking agent adsorption capacity and available and biodegradable organic matter. These parameters are of particular interest in solving the main problems associated with sewage sludge composting, namely porosity and nitrogen retention. This study also highlighted the necessity to extend the duration of the composting studies over 40 days in order to measure possible N2O late release and better identify parameters influencing N2O emissions.


Assuntos
Amônia , Compostagem , Gases de Efeito Estufa , Esgotos , Amônia/análise , Esgotos/química , Gases de Efeito Estufa/análise , Metano/análise , Solo/química , Óxido Nitroso/análise , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA