Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38856651

RESUMO

During acute viral infections, innate immune cells invade inflamed tissues and face hypoxic areas. Hypoxia-inducible factors (HIFs) adapt cellular responses towards these conditions. We wanted to investigate the effects of a loss of HIF-2α in macrophages during acute Friend murine leukemia retrovirus (FV) infection in C57BL/6 mice using a Cre/loxP system. Remarkably, mice with floxed Hif-2a (Hif-2afl; Hif-2a is also known as Epas1) did not show any signs of FV infection independent of Cre activity. This prevented a detailed analysis of the role of macrophage HIF-2α for FV infection but allowed us to study a model of unexpected FV resistance. Hif-2afl mice showed a significant decrease in the expression of the Atp6v1e2 gene encoding for the E2 subunit of the vacuolar H+-ATPase, which resulted in a decreased acidification of lysosomes and limited virus entry into the cell. These findings highlight that the insertion of loxP sites is not always without functional consequences and has established a phenotype in the floxed Hif-2a mouse, which is not only unexpected, but unwanted and is of relevance for the use of this mouse strain in (at least virus) experiments.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Vírus da Leucemia Murina de Friend , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Vírus da Leucemia Murina de Friend/genética , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Infecções por Retroviridae/genética , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
2.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537573

RESUMO

The population sizes of different retinal cell types vary between different strains of mice, and that variation can be mapped to genomic loci in order to identify its polygenic origin. In some cases, controlling genes act independently, whereas in other instances, they exhibit epistasis. Here, we identify an epistatic interaction revealed through the mapping of quantitative trait loci from a panel of recombinant inbred strains of mice. The population of retinal horizontal cells exhibits a twofold variation in number, mapping to quantitative trait loci on chromosomes 3 and 13, where these loci are shown to interact epistatically. We identify a prospective genetic interaction underlying this, mediated by the bHLH transcription factor Neurog2, at the chromosome 3 locus, functioning to repress the LIM homeodomain transcription factor Isl1, at the chromosome 13 locus. Using single and double conditional knockout mice, we confirm the countervailing actions of each gene, and validate in vitro a crucial role for two single nucleotide polymorphisms in the 5'UTR of Isl1, one of which yields a novel E-box, mediating the repressive action of Neurog2.


Assuntos
Locos de Características Quantitativas , Retina , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Contagem de Células , Mapeamento Cromossômico , Epistasia Genética , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Estudos Prospectivos , Locos de Características Quantitativas/genética
3.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262177

RESUMO

Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.


Assuntos
Mapeamento Encefálico , Ponte , Animais , Axônios , Córtex Cerebral , Camundongos , Vias Neurais/fisiologia , Neurônios , Ponte/fisiologia
4.
Cell Mol Life Sci ; 81(1): 204, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700532

RESUMO

The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.


Assuntos
Glicólise , Homeostase , Camundongos Knockout , Osteoblastos , Sirtuína 1 , Animais , Camundongos , Acetilação , Osso e Ossos/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Osteogênese , Sirtuína 1/metabolismo , Sirtuína 1/genética
5.
Dev Biol ; 494: 71-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521641

RESUMO

The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.


Assuntos
Orelha Interna , Animais , Diferenciação Celular/genética , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/metabolismo , Morfogênese , Sistema Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Domínio T
6.
Physiol Genomics ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101921

RESUMO

Atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase-A/natriuretic peptide receptor-A (GC-A/NPRA), stimulating natriuresis and diuresis and reducing blood pressure (BP), but the role of ANP/NPRA signaling in podocytes (highly specialized epithelial cells covering the outer surfaces of renal glomerular capillaries) remains unclear. This study aimed to determine the effect of conditional deletion of podocyte (PD)-specific Npr1 (encoding NPRA) gene knockout (KO) in male and female mice. Tamoxifen-treated wild-type control (PD Npr1 f/f; WT), heterozygous (PD-Cre-Npr1 f/+; HT), and knockout (PD-Cre-Npr1 f/-; KO) mice were fed a normal-, low-, or high-salt diet for 4 weeks. Podocytes isolated from HT and KO male and female mice showed complete absence of Npr1 mRNA and NPRA protein compared to WT mice. BP, plasma creatinine, plasma sodium, urinary protein, and albumin/creatinine ratio were significantly increased, while plasma total protein, albumin, creatinine clearance, and urinary sodium levels were significantly reduced in the HT and KO male and female mice compared to WT mice. These changes were significantly greater in males than females. On a normal-salt diet, glomerular filtration rate (GFR) was significantly decreased in PD Npr1 HT and KO male and female mice compared with WT mice. Immunofluorescence of podocin and synaptopodin were also significantly reduced in HT and KO mice compared to WT mice. These observations suggest that in podocytes, ANP/NPRA signaling may be crucial in the maintenance and regulation of glomerular filtration and BP and serve as a biomarker of renal function in a sex-dependent manner.

7.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G438-G459, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193195

RESUMO

The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.


Assuntos
Cálcio , Microbiota , Animais , Camundongos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Esôfago/metabolismo , Inflamação , Expressão Gênica
8.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946425

RESUMO

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.


Assuntos
MicroRNAs , Valva Tricúspide , Matriz Extracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Valva Mitral , Valva Tricúspide/anormalidades
9.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822888

RESUMO

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Assuntos
Astrócitos , Cílios , Camundongos Knockout , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Cílios/metabolismo , Cílios/efeitos dos fármacos , Camundongos , Complemento C3/metabolismo , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/farmacologia , Apoptose/efeitos dos fármacos
10.
FASEB J ; 37(8): e23091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37432656

RESUMO

Renal ischemia-reperfusion injury (IRI) is a common reason of acute kidney injury (AKI). AKI can progress to chronic kidney disease (CKD) in some survivors. Inflammation is considered the first-line response to early-stage IRI. We previously reported that core fucosylation (CF), specifically catalyzed by α-1,6 fucosyltransferase (FUT8), exacerbates renal fibrosis. However, the FUT8 characteristics, role, and mechanism in inflammation and fibrosis transition remain unclear. Considering renal tubular cells are the trigger cells that initiate the fibrosis in the AKI-to-CKD transition in IRI, we targeted CF by generating a renal tubular epithelial cell (TEC)-specific FUT8 knockout mouse and measured FUT8-driven and downstream signaling pathway expression and AKI-to-CKD transition. During the IRI extension phase, specific FUT8 deletion in the TECs ameliorated the IRI-induced renal interstitial inflammation and fibrosis mainly via the TLR3 CF-NF-κB signaling pathway. The results firstly indicated the role of FUT8 in the transition of inflammation and fibrosis. Therefore, the loss of FUT8 in TECs may be a novel potential strategy for treating AKI-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/etiologia , Fucosiltransferases/genética , Inflamação , Camundongos Knockout , NF-kappa B , Traumatismo por Reperfusão/genética , Receptor 3 Toll-Like
11.
Transgenic Res ; 33(3): 99-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684589

RESUMO

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.


Assuntos
Cerebelo , Camundongos Knockout , Proteína Básica da Mielina , Neurônios , Animais , Neurônios/metabolismo , Camundongos , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo
12.
Dev Biol ; 491: 1-12, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049534

RESUMO

Mammalian corneal development is a multistep process, including formation of the corneal epithelium (CE), endothelium and stroma during embryogenesis, followed by postnatal stratification of the epithelial layers and continuous renewal of the epithelium to replace the outermost corneal cells. Here, we employed the Cre-loxP system to conditionally deplete Pax6 proteins in two domains of ocular cells, i.e., the ocular surface epithelium (cornea, limbus and conjunctiva) (OSE) or postnatal CE via K14-cre or Aldh3-cre, respectively. Earlier and broader inactivation of Pax6 in the OSE resulted in thickened OSE with CE and limbal cells adopting the conjunctival keratin expression pattern. More restricted depletion of Pax6 in postnatal CE resulted in an abnormal cornea marked by reduced epithelial thickness despite increased epithelial cell proliferation. Immunofluorescence studies revealed loss of intermediate filament Cytokeratin 12 and diffused expression of adherens junction components, together with reduced tight junction protein, Zonula occludens-1. Furthermore, the expression of Cytokeratin 14, a basal cell marker in apical layers, indicates impaired differentiation of CE cells. Collectively, our data demonstrate that Pax6 is essential for maintaining proper differentiation and strong intercellular adhesion in postnatal CE cells, whereas limbal Pax6 is required to prevent the outgrowth of conjunctival cells to the cornea.


Assuntos
Córnea , Epitélio Corneano , Animais , Córnea/metabolismo , Epitélio Corneano/metabolismo , Queratina-12/metabolismo , Queratina-14/metabolismo , Queratinas/metabolismo , Mamíferos/metabolismo , Proteínas de Junções Íntimas/metabolismo
13.
J Physiol ; 601(16): 3499-3532, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291801

RESUMO

In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.


Assuntos
Angiotensinogênio , Sódio , Camundongos , Animais , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Apetite/fisiologia , Sede/fisiologia , Hipovolemia , Astrócitos/metabolismo , Hepatócitos/metabolismo , Angiotensina II/metabolismo , Cloreto de Sódio , Água
14.
Glia ; 71(11): 2623-2641, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470358

RESUMO

Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.


Assuntos
Relógios Circadianos , Neocórtex , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Astrócitos/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Proteoma/metabolismo , Proteômica
15.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34817057

RESUMO

Two small GTPases, Rab1 and Rab5, are key membrane trafficking regulators that are conserved in all eukaryotes. They have recently been found to be essential for cell survival and/or growth in cultured mammalian cells, thereby precluding the establishment of Rab1-knockout (KO) and Rab5-KO cells, making it extremely difficult to assess the impact of complete Rab1 or Rab5 protein depletion on cellular functions. Here, we generated and analyzed cell lines with conditional KO (CKO) of either Rab1 (Rab1A and Rab1B) or Rab5 (Rab5A, Rab5B and Rab5C) by using the auxin-inducible protein degradation system. Rab1 CKO and Rab5 CKO led to eventual cell death from 18 h and 48 h, respectively, after auxin exposure. After acute Rab1 protein depletion, the Golgi stack and ribbon structures were completely disrupted, and endoplasmic reticulum (ER)-to-Golgi trafficking was severely inhibited. Moreover, we discovered a novel Rab1-depletion phenotype: perinuclear clustering of early endosomes and delayed transferrin recycling. In contrast, acute Rab5 protein depletion resulted in loss of early endosomes and late endosomes, but lysosomes appeared to be normal. We also observed a dramatic reduction in the intracellular signals of endocytic cargos via receptor-mediated or fluid-phase endocytosis in Rab5-depleted cells.


Assuntos
Endocitose , Ácidos Indolacéticos , Animais , Endocitose/genética , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
16.
Biochem Biophys Res Commun ; 674: 183-189, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37450958

RESUMO

Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Células Epiteliais/metabolismo , Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos Transgênicos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo
17.
Development ; 147(13)2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32541013

RESUMO

The ways in which placental defects affect embryonic development are largely overlooked because of the lack of a trophoblast-specific approach for conditional gene ablation. To tackle this, we have established a simple, fast and efficient method for trophectodermal Tat-Cre/loxP recombination. We used the natural permeability barrier in mouse blastocysts in combination with off-the-shelf Tat-Cre recombinase to achieve editing of conditional alleles in the trophoblast lineage. This direct approach enables gene function analysis during implantation and placentation in mice, thereby crucially helping to broaden our understanding of human reproduction and development.


Assuntos
Blastocisto/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Animais , Blastocisto/citologia , Feminino , Edição de Genes , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos , Gravidez , Trofoblastos/citologia
18.
Transgenic Res ; 32(1-2): 143-152, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36637628

RESUMO

The mouse Agouti gene encodes a paracrine signaling factor which promotes melanocytes to produce yellow instead of black pigment. It has been reported that Agouti mRNA is confined to the dermal papilla after birth in various mammalian species. In this study, we created and characterized a knockin mouse strain in which Cre recombinase was expressed in-frame with endogenous Agouti coding sequence. The Agouti-Cre mice were bred with reporter mice (Rosa26-tdTomato or Rosa26-ZsGreen) to trace the lineage of Agouti-expressing cells during development. In skin, the reporter was detected in some dermal fibroblasts at the embryonic stage and in all dermal fibroblasts postnatally. It was also expressed in all mesenchymal lineage cells in other organs/tissues, including eyes, tongue, muscle, intestine, adipose, prostate and testis. Interestingly, the reporter expression was excluded from epithelial cells in the above organs/tissues. In brain, the reporter was observed in the outermost meningeal fibroblasts. Our work helps to illustrate the Agouti expression pattern during development and provides a valuable mouse strain for conditional gene targeting in mesenchymal lineage cells in multiple organs.


Assuntos
Proteína Agouti Sinalizadora , Animais , Masculino , Camundongos , Marcação de Genes , Integrases/genética , Integrases/metabolismo , Camundongos Transgênicos , Proteína Agouti Sinalizadora/genética
19.
Cell Biol Toxicol ; 39(6): 3141-3157, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37531013

RESUMO

Infertility has attracted global concern, and disruption of testosterone is a common cause of male infertility. Exploring the critical factors in testosterone biosynthesis may provide new insights for disease research and clinical therapy. Research on trichorhinophalangeal syndrome-1 (Trps1) gene has recently been focus on cancers; it is yet unknown whether Trps1 produces a marked effect in the male reproductive system. In the current study, single-cell RNA sequencing analysis of trichorhinophalangeal syndrome-1 gene (Trps1) expression in mouse testes and cleavage under targets and tagmentation and RNA sequencing were utilized to investigate the functionality of Trps1 in mouse Leydig cells. Knockdown of Trps1 increased testosterone synthesis in vitro and vivo using adeno-associated viral delivery and conditional knockout models. The results showed that Trps1 was abundantly expressed in Leydig cells. The expression levels of both steroidogenic factor-1 (Sf-1) and steroidogenic enzymes (Cyp11a1, Hsd3b, Cyp17a1, and Hsd17b3) as well as testosterone secretion were increased after Trps1 deficiency in vivo and vitro. Furthermore, disruption of Trps1 reduced histone deacetylase 1/2 activity and increased histone H3 acetylation in the Sf-1 promoter, thereby promoting testosterone secretion. Interestingly, Sf-1 also regulated the transcription of Trps1 through activating transcription factor 2. These results indicate that Trps1 targets Sf-1 to affect steroidogenesis through histone acetylation and shed light on the critical role of Trps1 functioning in the mouse Leydig cells.


Assuntos
Células Intersticiais do Testículo , Testosterona , Camundongos , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Sequência de Bases , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
20.
BMC Biol ; 20(1): 31, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115009

RESUMO

BACKGROUND: Floxed (flanked by loxP) alleles are a crucial portion of conditional knockout mouse models. However, an efficient and reliable strategy to flox genomic regions of any desired size is still lacking. RESULTS: Here, we demonstrate that the method combining electroporation of fertilized eggs with gRNA/Cas9 complexes and single-stranded oligodeoxynucleotides (ssODNs), assessing phasing of loxP insertions in founders using an in vitro Cre assay and an optional, highly specific and efficient second-round targeting ensures the generation of floxed F1 animals in roughly five months for a wide range of sequence lengths (448 bp to 160 kb reported here). CONCLUSIONS: Floxed alleles can be reliably obtained in a predictable timeline using the improved method of electroporation of two gRNA/Cas9 ribonucleoprotein particles (RNPs) and two ssODNs.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Alelos , Animais , Camundongos , Camundongos Knockout , RNA Guia de Cinetoplastídeos/genética , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA