Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Annu Rev Microbiol ; 75: 269-290, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343018

RESUMO

Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Bactérias , Biofilmes , Biologia , Escherichia coli/genética , Matriz Extracelular/química
2.
Appl Environ Microbiol ; 88(2): e0189121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788062

RESUMO

Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 nonantibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and pschE-independent pathways.


Assuntos
Biofilmes , Decanoatos , Escherichia coli O157 , Proteínas de Escherichia coli , Salicilatos , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Decanoatos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Salicilatos/farmacologia , Sorogrupo , Transativadores/genética
3.
Chembiochem ; 20(14): 1799-1809, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30848859

RESUMO

Cellular biocatalysts hold great promise for the synthesis of difficult to achieve compounds, such as complex active molecules. Whole-cell biocatalysts can be programmed through genetic circuits to be more efficient, but they suffer from low stability. The catalytic activity of whole cells decays under stressful conditions, such as prolonged incubation times or high temperatures. In nature, microbial communities cope with these conditions by forming biofilm structures. In this study, it is shown that the use of biofilm structures can enhance the stability of whole-cell biocatalysts. We employed two different strategies to increase the stability of whole-cell catalysts and decrease their susceptibility to high temperature. In the first approach, the formation of a biofilm structure is induced by controlling the expression of one of the curli component, CsgA. The alkaline phosphatase (ALP) enzyme was used to monitor the catalytic activity of cells in the biofilm structure. In the second approach, the ALP enzyme was fused to the CsgA curli fiber subunit to utilize the protective properties of the biofilm on enzyme biofilms. Furthermore, an AND logic gate is introduced between the expression of CsgA and ALP by toehold RNA switches and recombinases to enable logical programming of the whole-cell catalyst for biofilm formation and catalytic action with different tools. The study presents viable approaches to engineer a platform for biocatalysis processes.


Assuntos
Fosfatase Alcalina/genética , Biocatálise , Proteínas de Escherichia coli/genética , Redes Reguladoras de Genes , Proteínas Recombinantes de Fusão/genética , Fosfatase Alcalina/metabolismo , Biofilmes , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Temperatura Alta , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Recombinases/genética , Riboswitch
4.
Biotechnol Bioeng ; 112(10): 2016-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25950512

RESUMO

Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes. This approach is attractive because it is scalable, represents a modular strategy for site-specific enzyme immobilization, and has the potential to stabilize enzymes under denaturing environmental conditions. We site-specifically immobilized a recombinant α-amylase, fused to the SpyCatcher attachment domain, onto E. coli curli fibers displaying complementary SpyTag capture domains. We characterized the effectiveness of this immobilization technique on the biofilms and tested the stability of immobilized α-amylase in unfavorable conditions. This enzyme-modified biofilm maintained its activity when exposed to a wide range of pH and organic solvent conditions. In contrast to other biofilm-based catalysts, which rely on high cellular metabolism, the modified curli-based biofilm remained active even after cell death due to organic solvent exposure. This work lays the foundation for a new and versatile method of using the extracellular polymeric matrix of E. coli for creating novel biocatalytic surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Técnicas de Visualização da Superfície Celular , Enzimas Imobilizadas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/fisiologia , alfa-Amilases/metabolismo , Proteínas de Bactérias/genética , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Solventes , alfa-Amilases/genética
5.
ACS Biomater Sci Eng ; 9(5): 2156-2169, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687654

RESUMO

Poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is a highly conductive, easily processable, self-healing polymer. It has been shown to be useful in bioelectronic applications, for instance, as a biointerfacing layer for studying brain activity, in biosensitive transistors, and in wearable biosensors. A green and biofriendly method for improving the mechanical properties, biocompatibility, and stability of PEDOT:PSS involves mixing the polymer with a biopolymer. Via structural changes and interactions with PEDOT:PSS, biopolymers have the potential to improve the self-healing ability, flexibility, and electrical conductivity of the composite. In this work, we fabricated novel protein-polymer multifunctional composites by mixing PEDOT:PSS with genetically programmable amyloid curli fibers produced byEscherichia coli bacteria. Curli fibers are among the stiffest protein polymers and, once isolated from bacterial biofilms, can form plastic-like thin films that heal with the addition of water. Curli-PEDOT:PSS composites containing 60% curli fibers exhibited a conductivity 4.5-fold higher than that of pristine PEDOT:PSS. The curli fibers imbued the biocomposites with an immediate water-induced self-healing ability. Further, the addition of curli fibers lowered the Young's and shear moduli of the composites, improving their compatibility for tissue-interfacing applications. Lastly, we showed that genetically engineered fluorescent curli fibers retained their ability to fluoresce within curli-PEDOT:PSS composites. Curli fibers thus allow to modulate a range of properties in conductive PEDOT:PSS composites, broadening the applications of this polymer in biointerfaces and bioelectronics.


Assuntos
Materiais Biocompatíveis , Polímeros , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Bactérias , Água
6.
ACS ES T Water ; 2(11): 1836-1843, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36778666

RESUMO

Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.

7.
Front Pharmacol ; 13: 875349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571084

RESUMO

Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.

8.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336113

RESUMO

In Crohn's disease (CD) patients, the adherent-invasive Escherichia coli (AIEC) pathovar contributes to the chronic inflammation typical of the disease via its ability to invade gut epithelial cells and to survive in macrophages. We show that, in the AIEC strain LF82, inactivation of the pyrD gene, encoding dihydroorotate dehydrogenase (DHOD), an enzyme of the de novo pyrimidine biosynthetic pathway, completely abolished its ability of to grow in a macrophage environment-mimicking culture medium. In addition, pyrD inactivation reduced flagellar motility and strongly affected biofilm formation by downregulating transcription of both type 1 fimbriae and curli subunit genes. Thus, the pyrD gene appears to be essential for several cellular processes involved in AIEC virulence. Interestingly, vidofludimus (VF), a DHOD inhibitor, has been proposed as an effective drug in CD treatment. Despite displaying a potentially similar binding mode for both human and E. coli DHOD in computational molecular docking experiments, VF showed no activity on either growth or virulence-related processes in LF82. Altogether, our results suggest that the crucial role played by the pyrD gene in AIEC virulence, and the presence of structural differences between E. coli and human DHOD allowing for the design of specific inhibitors, make E. coli DHOD a promising target for therapeutical strategies aiming at counteracting chronic inflammation in CD by acting selectively on its bacterial triggers.

9.
mSystems ; 7(5): e0152221, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972150

RESUMO

For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter, they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter. Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality.


Assuntos
Bacteriófagos , Podoviridae , Humanos , Filogenia , Genoma Viral , Bactérias/genética , Myoviridae/genética
10.
ACS Synth Biol ; 10(11): 2997-3008, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34652130

RESUMO

Biofilms are three-dimensional (3D) bacterial communities that exhibit a highly self-organized nature in terms of their composition and complex architecture. Bacteria in biofilms display emergent biological properties, such as resistance to antimicrobials and disinfectants that the individual planktonic cells lack. Bacterial biofilms possess specialized architectural features including unique extracellular matrix compositions and a distinct spatially patterned arrangement of cells and matrix components within the biofilm. It is unclear which of these architectural elements of bacterial biofilms lead to the development of their emergent biological properties. Here, we report a 3D printing-based technique for studying the emergent resistance behaviors of Escherichia coli biofilms as a function of their architecture. Cellulose and curli are the major extracellular-matrix components in E. coli biofilms. We show that 3D-printed biofilms expressing either curli alone or both curli and cellulose in their extracellular matrices show higher resistance to exposure against disinfectants than 3D prints expressing either cellulose alone or no biofilm-matrix components. The 3D-printed biofilms expressing cellulose and/or curli also show thicker anaerobic zones than nonbiofilm-forming E. coli 3D prints. Thus, the matrix composition plays a crucial role in the emergent spatial patterning and biological endurance of 3D-printed biofilms. In contrast, initial spatial distribution of bacterial density or curli-producing cells does not have an effect on biofilm resistance phenotypes. Further, these 3D-printed biofilms could be reversibly attached to different surfaces (bacterial cellulose, glass, and polystyrene) and display resistance to physical distortions by retaining their shape and structure. This physical robustness highlights their potential in applications including bioremediation, protective coatings against pathogens on medical devices, or wastewater treatment, among many others. This new understanding of the emergent behavior of bacterial biofilms could aid in the development of novel engineered living materials using synthetic biology and materials science approaches.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Matriz Extracelular/fisiologia , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Escherichia coli/metabolismo , Matriz Extracelular/metabolismo , Impressão Tridimensional/instrumentação
11.
Pathogens ; 9(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971800

RESUMO

Current Escherichia coli antibiofilm treatments comprise a combination of antibiotics commonly used against planktonic cells, leading to treatment failure. A better understanding of the genes involved in biofilm formation could facilitate the development of efficient and specific new antibiofilm treatments. A total of 2578 E. coli mutants were generated by transposon insertion, of which 536 were analysed in this study. After sequencing, Tn263 mutant, classified as low biofilm-former (LF) compared to the wild-type (wt) strain (ATCC 25922), showed an interruption in the purL gene, involved in the de novo purine biosynthesis pathway. To elucidate the role of purL in biofilm formation, a knockout was generated showing reduced production of curli fibres, leading to an impaired biofilm formation. These conditions were restored by complementation of the strain or addition of exogenous inosine. Proteomic and transcriptional analyses were performed to characterise the differences caused by purL alterations. Thirteen proteins were altered compared to wt. The corresponding genes were analysed by qRT-PCR not only in the Tn263 and wt, but also in clinical strains with different biofilm activity. Overall, this study suggests that purL is essential for biofilm formation in E. coli and can be considered as a potential antibiofilm target.

12.
ACS Synth Biol ; 9(12): 3334-3343, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33237760

RESUMO

Nanostructures formed by self-assembled peptides have been increasingly exploited as functional materials for a wide variety of applications, from biotechnology to energy. However, it is sometimes challenging to assemble free short peptides into functional supramolecular structures, since not all peptides have the ability to self-assemble. Here, we report a self-assembly mechanism for short functional peptides that we derived from a class of fiber-forming amyloid proteins called curli. CsgA, the major subunit of curli fibers, is a self-assembling ß-helical subunit composed of five pseudorepeats (R1-R5). We first deleted the internal repeats (R2, R3, R4), known to be less essential for the aggregation of CsgA monomers into fibers, forming a truncated CsgA variant (R1/R5). As a proof-of-concept to introduce functionality in the fibers, we then genetically substituted the internal repeats by a hydroxyapatite (HAP)-binding peptide, resulting in a R1/HAP/R5 construct. Our method thus utilizes the R1/R5-driven self-assembly mechanism to assemble the HAP-binding peptide and form hydrogel-like materials in macroscopic quantities suitable for biomineralization. We confirmed the expression and fibrillar morphology of the truncated and HAP-containing curli-like amyloid fibers. X-ray diffraction and TEM showed the functionality of the HAP-binding peptide for mineralization and formation of nanocrystalline HAP. Overall, we show that fusion to the R1 and R5 repeats of CsgA enables the self-assembly of functional peptides into micron long fibers. Further, the mineral-templating ability that the R1/HAP/R5 fibers possesses opens up broader applications for curli proteins in the tissue engineering and biomaterials fields.


Assuntos
Durapatita/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos/metabolismo , Durapatita/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Nanoestruturas/química , Peptídeos/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Agregados Proteicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
13.
Adv Mater ; 31(40): e1901826, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31402514

RESUMO

A notable challenge for the design of engineered living materials (ELMs) is programming a cellular system to assimilate resources from its surroundings and convert them into macroscopic materials with specific functions. Here, an ELM that uses Escherichia coli as its cellular chassis and engineered curli nanofibers as its extracellular matrix component is demonstrated. Cell-laden hydrogels are created by concentrating curli-producing cultures. The rheological properties of the living hydrogels are modulated by genetically encoded factors and processing steps. The hydrogels have the ability to grow and self-renew when placed under conditions that facilitate cell growth. Genetic programming enables the gels to be customized to interact with different tissues of the gastrointestinal tract selectively. This work lays a foundation for the application of ELMs with therapeutic functions and extended residence times in the gut.


Assuntos
Materiais Biocompatíveis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Hidrogéis/metabolismo , Adesividade , Materiais Biocompatíveis/química , Hidrogéis/química , Nanofibras/química
14.
ACS Biomater Sci Eng ; 4(6): 2100-2105, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33435033

RESUMO

Alginate hydrogels are biocompatible, biodegradable, low-cost, and widely used as bioinks, cell encapsulates, three-dimensional culture matrices, drug delivery systems, and scaffolds for tissue engineering. Nevertheless, their limited stiffness hinders their use for certain biomedical applications. Many research groups have tried to address this problem by reinforcing alginate hydrogels with graphene, carbon nanotubes, or silver nanoparticles. However, these materials present nanotoxicity issues, limiting their use for biomedical applications. Other studies show that electrospinning or wet spinning can be used to fabricate biocompatible, micro- and nanofibers to reinforce hydrogels. As a relatively simple and cheap alternative, in this study we used bioengineered bacteria to fabricate amyloid curli fibers to enhance the stiffness of alginate hydrogels. We have fabricated for the first time bioengineered amyloid curli fibers-hydrogel composites and characterized them by a combination of (i) atomic force microscopy (AFM) to measure the Young's modulus of the bioengineered amyloid curli fibers and study their topography, (ii) nanoindentation to measure the Young's modulus of the amyloid curli fibers-alginate nanocomposite hydrogels, and (iii) Fourier-transform infrared spectroscopy (FTIR) to analyze their composition. The fabricated nanocomposites resulted in a highly improved Young's modulus (up to 4-fold) and showed very similar physical and chemical properties, opening the window for their use in applications where the properties alginate hydrogels are convenient but do not match the stiffness needed.

15.
ACS Synth Biol ; 7(6): 1640-1650, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29791796

RESUMO

The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.


Assuntos
Azidas/metabolismo , Escherichia coli/genética , Microrganismos Geneticamente Modificados , Fenilalanina/análogos & derivados , Biologia Sintética/métodos , Administração Oral , Animais , Carbocianinas/administração & dosagem , Carbocianinas/química , Química Click , Códon de Terminação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , Mutação , Fenilalanina/genética , Fenilalanina/metabolismo , Probióticos
16.
ACS Biomater Sci Eng ; 3(5): 733-741, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33440494

RESUMO

As interest in using proteins to assemble functional, biocompatible, and environmentally friendly materials is growing, developing scalable protocols for producing recombinant proteins with customized functions coupled to straightforward fabrication processes is becoming crucial. Here, we use E. coli bacteria to produce amyloid protein nanofibers that are key constituents of the biofilm extracellular matrix and show that protein nanofiber aggregates can be purified using a fast and easily accessible vacuum filtration procedure. With their extreme resistance to heat, detergents, solvents, and denaturing agents, engineered curli nanofibers remain functional throughout the rigorous processing and can be used to assemble macroscopic materials directly from broth culture. As a demonstration, we show that engineered curli nanofibers can be fabricated into self-standing films while maintaining the functionality of various fused domains that confer new specific binding activity to the material. We also demonstrate that purified curli fibers can be disassembled, reassembled into thin films, and recycled for further materials processing. Our scalable approach, which combines established purification techniques for amyloid fibers, is applicable to a new class of recombinant amyloid proteins whose sequence can be easily tailored for diverse applications through genetic engineering.

17.
J Alzheimers Dis Parkinsonism ; 5(1): 177, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25977840

RESUMO

Since the inception of the human microbiome project (HMP) by the US National Institutes of Health (NIH) in 2007 there has been a keen resurgence in our recognition of the human microbiome and its contribution to development, immunity, neurophysiology, metabolic and nutritive support to central nervous system (CNS) health and disease. What is not generally appreciated is that (i) the ~1014 microbial cells that comprise the human microbiome outnumber human host cells by approximately one hundred-to-one; (ii) together the microbial genes of the microbiome outnumber human host genes by about one hundred-and-fifty to one; (iii) collectively these microbes constitute the largest 'diffuse organ system' in the human body, more metabolically active than the liver; strongly influencing host nutritive-, innate-immune, neuroinflammatory-, neuromodulatory- and neurotransmission-functions; and (iv) that these microbes actively secrete highly complex, immunogenic mixtures of lipopolysaccharide (LPS) and amyloid from their outer membranes into their immediate environment. While secreted LPS and amyloids are generally quite soluble as monomers over time they form into highly insoluble fibrous protein aggregates that are implicated in the progressive degenerative neuropathology of several common, age-related disorders of the human CNS including Alzheimer's disease (AD). This general commentary-perspective paper will highlight some recent findings on microbial-derived secreted LPS and amyloids and the potential contribution of these neurotoxic and proinflammatory microbial exudates to age-related inflammatory amyloidogenesis and neurodegeneration, with specific reference to AD wherever possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA