Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(33): e202400807, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38590165

RESUMO

Inclusion of a heteroatom to the phosphole ring is a promising strategy to intrinsically modulate the optical properties of phosphole derivatives. We report on a series of 2-aryl-3H-1,3-benzazaphosphole oxides that were efficiently prepared via sequential C-P cross-coupling, dehydrative [3+2] cycloaddition, and ring-oxidation reactions. The inclusion of one nitrogen atom into the benzophosphole framework caused red shifting of the absorption and emission maxima, reflecting the greater stabilization of the LUMO level. 2-(2-Hydroxyphenyl)benzazaphosphole oxide underwent excited state intramolecular proton transfer and emitted a weak fluorescence from the excited state of the N-H tautomer.

2.
Chemistry ; 30(29): e202400401, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488227

RESUMO

Although second near-infrared (NIR-II, 1000-1500 nm) light has attracted considerable attention, especially for life sciences applications, the development of organic dyes with NIR-II absorption remains a formidable challenge. Herein we report the design, synthesis, and electronic properties of 20π-electron antiaromatic benziphthalocyanines (BPcs) that exhibit intense absorption bands in the NIR region. The strong, low-energy absorption of the antiaromatic BPcs is attributed to electric-dipole-allowed HOMO-LUMO transitions with narrow band gaps, enabled by the reduced structural symmetry of BPc compared with regular porphyrins and phthalocyanines. The combination of peripheral substituents and a central metal decreases the HOMO-LUMO energy gaps, leading to the extension of the absorption bands into the NIR-II region (reaching 1100 nm) under reductive conditions.

3.
Angew Chem Int Ed Engl ; 63(20): e202402616, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38488317

RESUMO

The application of spectrally unique, bright, and water-soluble fluorescent dyes is indispensable for the analysis of biological systems. Multiparameter flow cytometry is a powerful tool for characterization of mixed cell populations. To discriminate the different cell populations, they are typically stained by a set of fluorescent reagents, e.g., antibody-fluorophore conjugates. The number of parameters which can be studied simultaneously strongly depends on the availability of reagents which can be differentiated by their spectral properties. In this study a series of fluorescent polymer dyes was developed, that can be excited with a single violet laser (405 nm) but distinguished by their unique emission spectra. The polyfluorene-based polymers can be used on their own, or in combination with covalently bound small-molecule dyes to generate energy transfer constructs to red-shift the emission wavelength based on Förster resonance energy transfer (FRET). The polymer dyes were utilized in a biological flow cytometry assay by conjugating several of them to antibodies, demonstrating their effectiveness as reagents. This report represents the first systematic investigation of structure-property relationships for this type of fluorescent dyes.


Assuntos
Citometria de Fluxo , Corantes Fluorescentes , Polímeros , Solubilidade , Água , Corantes Fluorescentes/química , Polímeros/química , Água/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Estrutura Molecular
4.
Angew Chem Int Ed Engl ; : e202414069, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382569

RESUMO

Whilst energetic and kinetic aspects of folding processes are meanwhile well understood for natural biomacromolecules, the folding dynamics in so far studied artificial foldamer counterparts remain largely unexplored. This is due to the low energy barriers between their conformational isomers that make the dynamic processes undetectable with conventional methods such as UV/vis absorption, fluorescence, and NMR spectroscopy, making such processes 'invisible'. Here we present an asymmetric perylene bisimide dimer (bis-PBI 1) that possesses conformational chirality in its folded state. Owing to the large interconversion barrier (≥ 116 kJ mol-1), four stereoisomers could be separated and isolated. Since the interconversion between these stereoisomers requires the foldamer to first open and then to re-fold, the transformation of one stereoisomer into others allowed us to 'visualize' the dynamics of folding with time and determine its lifetimes and the energetic barriers associated with the folding process. Supported by quantum chemical calculations, we identified the open structure to be only a fleeting metastable state of higher energy. Our experimental observation of the kinetics associated with the molecular dynamics in the PBI foldamer advances the fundamental understanding of folding in synthetic foldamers and paves the way for the design of smart functional materials.

5.
Angew Chem Int Ed Engl ; 63(30): e202404149, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725174

RESUMO

Although helicenes are promising molecules, the synthetic difficulty and tediousness have often been problems, and only small amounts of optically pure helicenes have been obtained by using chiral HPLC in most cases. Herein, aza[7]helicenes or closed-aza[7]helicenes with (1R)-menthyl substituents were selectively synthesized via the intramolecular Scholl reaction, and the diastereomeric pairs were separated by silica gel column chromatography. The optically pure helicenes were further transformed into the corresponding cyclic dimers, and the chiroptical properties were investigated. The rigid π-frameworks of the dimers led to the high molar extinction coefficients and fluorescence quantum yields, while the twisted helicene moieties induced clear Cotton effects and CPL in the visible region, and the high CPL brightness (BCPL) was achieved. Furthermore, the cyclic dimers were found to have the macrocyclic cavity with the two NH groups suitable for the selective binding of a fluoride anion, which induced significantly redshifted fluorescence and CPL in the red region.

6.
Chemistry ; 29(61): e202302148, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37559155

RESUMO

The fundamental properties of azaporphyrins can be modulated over a wide range by changing the number of meso-nitrogen atoms. Reported herein are the first examples of 5,10,15,20-tetraaryl-5-azaporphyrinium (MTAMAP) salts, which were prepared via metal-templated cyclization of the corresponding zinc(II) and copper(II) complexes of 10-aryl-1-chloro-19-benzoyl-5,15-dimesityl-10-azabiladiene-ac. The inclusion of one meso-nitrogen atom in the 5,10,15,20-tetraarylporphyrin skeleton considerably changes the redox and optical properties as well as the degree of aromaticity of the porphyrin ring. The present findings suggest that MTAMAP salts would be promising scaffolds for the development of new azaporphyrin-based ionic fluorophores and photosensitizers.

7.
Chemistry ; 29(21): e202203464, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36696516

RESUMO

A novel heavy metal-free and safe synthetic methodology enabling one-step conversion of ketones into corresponding 4,5,6,7-tetrafluorobenzofurans (F4 BFs) has been developed. The presented approach has numerous advantageous qualities, including utilization of readily available substrates, broad scope, scalability, and good reaction yields. Importantly, some of the benzofurans prepared by this method were heretofore inaccessible by any other known transformation. Importantly, furo[2,3-b]pyrazines and heretofore unexplored difuro[2,3-c:3',2'-e]pyridazine can be prepared using this strategy. Spectroscopic studies reveal that for simple systems, absorption and fluorescence maxima fall within the UV spectral range, while π-electron system expansion red-shifts both spectra. Moreover, the good fluorescence quantum yields observed in solution, up to 96 %, are also maintained in the solid state. Experimental results are supported by density functional theory (DFT) calculations. The presented methodology, combined with the spectroscopic characteristics, suggest the possibility of using F4 BFs in the optoelectronic industry (i. e., organic light emitting devices (OLED), organic field-effect transistors (OFET), organic photovoltaics (OPV)) as inexpensive and readily available emissive or semiconductor materials.

8.
Chemistry ; 29(23): e202203899, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36637412

RESUMO

Electrochromic systems capable of switching near-infrared (NIR) absorption are fascinating from the viewpoint of applications in the materials and life sciences. Although 11,11,12,12-tetraaryl-9,10-anthraquinodimethanes (AQDs) with a folded form undergo one-stage two-electron oxidation to produce twisted dicationic dyes exhibiting NIR absorption, there is a need to establish a design strategy that can enhance the NIR-absorbing abilities of the corresponding dicationic dyes. In this study, we designed and synthesized a series of AQD derivatives with various substituents introduced at the ortho-position(s) of the 4-methoxyphenyl group. X-ray and spectroscopic analyses revealed that NIR-absorbing properties can be changed by introduction of the ortho-substituents. Thus, control of the steric and electronic effects of the ortho-substituents on the 4-methoxyphenyl groups was demonstrated to be an effective strategy for fine-tuning of the HOMO and LUMO levels for neutral AQDs and twisted dications, respectively, resulting in the modification of electrochemical and spectroscopic properties under an "ortho-substitution strategy".

9.
Chemistry ; 29(7): e202202861, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282517

RESUMO

A significant barrier inhibiting multiplexed imaging in the near-infrared (NIR) is the extensive trial and error associated with fine-tuning NIR dyes. In particular, the need to synthesize and experimentally evaluate dye derivatives in order to empirically identify those that can be used in multiplexing applications, requires a large investment of time. While coarse-tuning efforts benefit from computational prediction that can be used to identify target dye structures for synthetic campaigns, errors in computational prediction remain too large to accurately parse modifications aimed at fine-tuning changes in dye absorbance and emission. To address this issue, we screened different levels of theory and identified a time-dependent density functional theory (TD-DFT) approach that can rapidly, as opposed to synthesis and experimental evaluation, estimate absorbance and emission. By calibrating these computational estimations of absorbance and emission to experimentally determined parameters for a panel of existing NIR dyes, we obtain calibration curves that can be used to accurately predict the effect of fine-tuning modifications in new dyes. We demonstrate the predictive power of this calibrated dataset using seven previously unreported dyes, obtaining mean percent errors in absorbance and emission of 2.2 and 2.8 %, respectively. This approach provides a significant timesavings, relative to synthesis and evaluation of dye derivatives, and can be used to focus synthetic campaigns on the most promising dye structures. The new dyes described herein can be utilized for multiplexed imaging, and the experimentally calibrated dataset will provide the dye chemistry community with a means to rapidly identify fine-tuned NIR dyes in silico to guide subsequent synthetic campaigns.

10.
Chemistry ; 29(70): e202302856, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37713237

RESUMO

One of the iconic characteristics of metal-organic frameworks (MOFs) is the possesssion of guest-accessible pores. Increasing pore size has a direct and often beneficial impact on a MOF's adsorption and separation properties. However, as pore size increases, the resulting void spaces are often filled by interpenetrated frameworks, where one or more networks crystallize within the pore system of another identical network, reducing the MOF's free volume and pore size. Furthermore, due to the thermodynamic favorability of interpenetration during solvothermal synthesis, techniques to synthetically differentiate interpenetrated from non-interpenetrated MOFs are paramount. This study reports the synthesis of deinterpenetrated IRMOF-9 via halide mediated deinterpenetrative conversion of Zn4 O-derived IRMOF-9. IRMOF-9, when treated with ethylammonium bromide, is quasi-selectively etched, revealing the non-interpenetrated analogue, IRMOF-10 (deinterpenetrated IRMOF-9), which can be isolated prior to complete dissolution by the bromide solution. Dye adsorption, surface area and pore size distribution analysis, and powder X-ray diffraction are consistent with successful deinterpenetration.

11.
Chemistry ; 29(45): e202300979, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37203589

RESUMO

A new, transformative method for the preparation of rhodols and other merocyanines from readily available tetrafluorohydroxybenzaldehyde and aminophenols has been developed. It is now possible to prepare merocyanines bearing three fluorine atoms and additional conjugated rings, and the whole one-pot process occurs under neutral, mild conditions. Three heretofore unknown merocyanine-based architectures were prepared using this strategy from aminonaphthols and 4-hydroxycoumarins. The ability to change the structure of original rhodol chromophore into π-expanded merocyanines translates to a comprehensive method for the modulation of photophysical properties, such as shifting the absorption and emission bands across almost the entire visible spectrum, reaching a huge Stokes shift i. e. 4800 cm-1 , brightness approximately 80.000 M-1  cm-1 , two-photon absorption cross-section above 150 GM and switching-on/off solvatofluorochromism. A detailed investigation allowed to rationalize the different spectroscopic behavior of rhodols and new merocyanines, addressing solvatochromism and two-photon absorption.

12.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375305

RESUMO

Herein, we report the synthetic access to a set of π-extended BODIPYs featuring a penta-arylated (phenyl and/or thiophene) dipyrrin framework. We take advantage of the full chemoselective control of 8-methylthio-2,3,5,6-tetrabromoBODIPY when we conduct the Liebeskind-Srogl cross-coupling (LSCC) to functionalize exclusively the meso-position, followed by the tetra-Suzuki reaction to arylate the halogenated sites. All these laser dyes display absorption and emission bands in the red edge of the visible spectrum reaching the near-infrared with thiophene functionalization. The emission efficiency, both fluorescence and laser, of the polyphenylBODIPYs can be enhanced upon decoration of the peripheral phenyls with electron donor/acceptor groups at para positions. Alternatively, the polythiopheneBODIPYs show an astonishing laser performance despite the charge transfer character of the emitting state. Therefore, these BODIPYs are suitable as a palette of stable and bright laser sources covering the spectral region from 610 nm to 750 nm.

13.
Angew Chem Int Ed Engl ; 62(49): e202311123, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37823245

RESUMO

The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.

14.
Angew Chem Int Ed Engl ; 62(5): e202214543, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36350769

RESUMO

Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI -catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features-such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character-were noted. All in all, the aforementioned features render them valuable for technological applications.

15.
Angew Chem Int Ed Engl ; 62(41): e202302781, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555720

RESUMO

New photoactivatable fluorescent dyes (rhodamine, carbo- and silicon-rhodamines [SiR]) with emission ranging from green to far red have been prepared, and their photophysical properties studied. The photocleavable 2-nitrobenzyloxycarbonyl unit with an alpha-carboxyl group as a branching point and additional functionality was attached to a polycyclic and lipophilic fluorescent dye. The photoactivatable probes having the HaloTagTM amine (O2) ligand bound with a dye core were obtained and applied for live-cell staining in stable cell lines incorporating Vimentin (VIM) or Nuclear Pore Complex Protein NUP96 fused with the HaloTag. The probes were applied in 2D (VIM, NUP96) and 3D (VIM) MINFLUX nanoscopy, as well as in superresolution fluorescence microscopy with single fluorophore activation (VIM, live-cell labeling). Images of VIM and NUPs labeled with different dyes were acquired and their apparent dimensions and shapes assessed on a lower single-digit nanometer scale. Applicability and performance of the photoactivatable dye derivatives were evaluated in terms of photoactivation rate, labeling and detection efficiency, number of detected photons per molecule and other parameters related to MINFLUX nanoscopy.


Assuntos
Corantes Fluorescentes , Silício , Rodaminas , Microscopia de Fluorescência/métodos , Linhagem Celular
16.
Angew Chem Int Ed Engl ; 62(11): e202218358, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36670047

RESUMO

Activatable near-infrared (NIR) dyes responsive to external stimuli are used in medical and other applications. Here, we describe the design and synthesis of bench-stable 18π- and 20π-electron benzitetraazaporphyrins (BzTAPs) possessing redox-switchable NIR properties. X-Ray, NMR, and UV/Visible-NIR analyses revealed that 20π-electron BzTAP 1 exhibits NIR absorption and antiaromaticity with a paratropic ring-current, while 18π-electron BzTAP 2 shows weakly aromatic character with NIR inertness. Notably, the NIR-silent BzTAP 2 was readily converted to the NIR-active BzTAP 1 in the presence of mild reducing agents such as amine. The intense NIR absorption band of BzTAP 1 is in sharp contrast to the very weak absorption bands of previously reported antiaromatic porphyrinoids. Molecular orbital analysis revealed that symmetry-lowering perturbation of the 20π-electron porphyrinoid skeleton enables the HOMO-LUMO transition of 1 to be electric-dipole-allowed. BzTAPs are expected to be useful for constructing activatable NIR probes working in reductive environments.

17.
Angew Chem Int Ed Engl ; 62(25): e202302032, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36920685

RESUMO

Phthalocyanines are extensively used by the dye and pigment industry and in photovoltaic and photodynamic therapy research due to their intense absorption of visible light, outstanding stability, and versatility. As pigments, the unsubstituted phthalocyanines are insoluble owing to strong intermolecular π-π-stacking interactions, which causes limitations for the solution chemistry for both free base and metalated phthalocyanines. Here we show a supramolecular host-guest strategy to dissolve phthalocyanines into solution. C64 nanographene tetraimide (1) binds two free base/zinc/copper phthalocyanines in a 1 : 2 stoichiometry to solubilize phthalocyanines as evidenced by 1 H NMR spectroscopy, UV/Vis absorption and single-crystal X-ray analysis. Binding studies using a tetra-tert-butyl-substituted soluble phthalocyanine revealed binding affinities of up to 109  M-1 in tetrachloromethane, relating to a Gibbs free energy of -52 kJ mol-1 . Energy decomposition analysis revealed that complexes between 1 and phthalocyanines are stabilized by dispersion interactions followed by electrostatics as well as significant charge-transfer interactions.


Assuntos
Isoindóis , Fotoquimioterapia , Fenômenos Químicos , Luz
18.
Chemistry ; 28(26): e202200496, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235237

RESUMO

N,N'-disubstituted indigos are photoswitchable molecules that have recently caught the attention due to their addressability by red-light. When alkyl and aryl groups are utilized as the N-substituents, the thermal half-lives of Z isomers can be tuned independently while maintaining the advantageous red-shifted absorption spectra. To utilize these molecules in real-world applications, it is of immense importance to understand how their molecular structures as well as the environment influence their switching properties. To this end, we probed their photoisomerization mechanism by carrying out photophysical and computational studies in solvents of different polarities. The fluorescence and transient absorption experiments suggest for more polar excited and transition states, which explains the bathochromic shifts of absorption spectra and shorter thermal half-lives. On the other hand, the quantum chemical calculations reveal that in contrast to N-carbonyl groups, N-alkyl and N-aryl substituents are not strongly conjugated with the indigo chromophore and can thus serve as a tool for tuning the thermal stability of Z isomers. Both approaches are combined to provide in-depth understandings of how indigos undergo photoswitching as well as how they are influenced by N-substituent and the chemical surroundings. These mechanistic insights will serve as guiding principles for designing molecules eyeing broader applications.


Assuntos
Índigo Carmim , Luz , Fluorescência , Índigo Carmim/química , Estrutura Molecular , Solventes/química
19.
Chemistry ; 28(25): e202104552, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35244293

RESUMO

Three novel diketopyrrolopyrrole (DPP) based small molecules have been synthesized and characterized in terms of their chemical-physical, electrochemical and electrical properties. All the molecules consist of a central DPP electron acceptor core symmetrically functionalized with donor bi-thienyl moieties and flanked in the terminal positions by three different auxiliary electron-acceptor groups. This kind of molecular structure, characterized by an alternation of electron acceptor and donor groups, was purposely designed to provide a significant absorption at the longer wavelengths of the visible spectrum: when analysed as thin films, in fact, the dyes absorb well over 800 nm and exhibit a narrow optical bandgap down to 1.28 eV. A detailed DFT analysis provides useful information on the electronic structure of the dyes and on the features of the main optical transitions. Organic field-effect transistors (OFETs) have been fabricated by depositing the DPP dyes as active layers from solution: the different end-functionalization of the dyes had an effect on the charge-transport properties with two of the dyes acting as n-type semiconductors (electron mobility up to 4.4 ⋅ 10-2  cm2 /V ⋅ s) and the third one as a p-type semiconductor (hole mobility up to 2.3 ⋅ 10-3  cm2 /V ⋅ s). Interestingly, well-balanced ambipolar transistors were achieved by blending the most performant n-type and p-type dyes with hole and electron mobility in the order of 10-3  cm2 /V ⋅ s.

20.
Angew Chem Int Ed Engl ; 61(15): e202117625, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35103371

RESUMO

Enantioselective molecular recognition of chiral molecules that lack specific interaction sites for hydrogen bonding or Lewis acid-base interactions remains challenging. Here we introduce the concept of tailored chiral π-surfaces toward the maximization of shape complementarity. As we demonstrate for helicenes it is indeed possible by pure van-der-Waals interactions (π-π interactions and CH-π interactions) to accomplish enantioselective binding. This is shown for a novel benzo[ghi]perylene trisimide (BPTI) receptor whose π-scaffold is contorted into a chiral plane by functionalization with 1,1'-bi-2-naphthol (BINOL). Complexation experiments of enantiopure (P)-BPTI with (P)- and (M)-[6]helicene afforded binding constants of 10 700 M-1 and 550 M-1 , respectively, thereby demonstrating the pronounced enantiodifferentiation by the homochiral π-scaffold of the BPTI host. The enantioselective recognition is even observable by the naked eye due to a specific exciplex-type emission originating from the interacting homochiral π-scaffolds of electron-rich [6]helicene and electron-poor BPTI.


Assuntos
Perileno , Compostos Policíclicos , Estrutura Molecular , Perileno/química , Compostos Policíclicos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA