Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ISA Trans ; 139: 475-483, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37031028

RESUMO

Electromagnetic actuation results suitable for wireless driven motion, where the estimation of the force between magnetic elements is usually required. This force can lead to states where the magnetic-mechanical system remains fixed, requiring constraints to avoid the transgression of these states, and Barrier Lyapunov Functions (BLF) are useful for this purpose. This work presents an adaptive controller with BLF in a magnetic pendulum with state restrictions. It employs fixed electromagnets to induce motion on a pendulum with a permanent magnet as its bob. The force between the magnetic elements is obtained through approximation functions. A new implementation strategy for the control gains introduces the effect of state restrictions on the control action based on a control BLF. Results are analyzed in both simulations and experimental stages, which prove the advantages of employing BLF controllers in mechanical systems that require the avoidance of specific boundaries.

2.
ACS Appl Mater Interfaces ; 15(25): 30653-30662, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327497

RESUMO

Soft vibrotactile devices have the potential to expand the functionality of emerging electronic skin technologies. However, those devices often lack the necessary overall performance, sensing-actuation feedback and control, and mechanical compliance for seamless integration on the skin. Here, we present soft haptic electromagnetic actuators that consist of intrinsically stretchable conductors, pressure-sensitive conductive foams, and soft magnetic composites. To minimize joule heating, high-performance stretchable composite conductors are developed based on in situ-grown silver nanoparticles formed within the silver flake framework. The conductors are laser-patterned to form soft and densely packed coils to further minimize heating. Soft pressure-sensitive conducting polymer-cellulose foams are developed and integrated to tune the resonance frequency and to provide internal resonator amplitude sensing in the resonators. The above components together with a soft magnet are assembled into soft vibrotactile devices providing high-performance actuation combined with amplitude sensing. We believe that soft haptic devices will be an essential component in future developments of multifunctional electronic skin for future human-computer and human-robotic interfaces.

3.
ISA Trans ; 140: 293-308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37414593

RESUMO

Fault-tolerant control of active magnetic bearing (AMB) systems with redundant electromagnetic actuators (EMAs) based on generalized bias current linearization has become a practical technique to address EMA/amplifier faults. In this method, the configuration of multi-channel EMAs involves solving a high-dimensional and nonlinear problem containing complex constraints offline. This article develops a general framework for the EMAs multi-objective optimization configuration (MOOC) by combining the non-dominated sorting genetic algorithm III (NSGA-III) and the sequential quadratic programming (SQP) with the designing of objectives, handling of constraints, consideration of the iterative efficiency and the diversity of solutions. The numerical simulation results confirm the feasibility of the framework for searching the non-inferior configurations and reveal the function mechanism that intermediate variables of the nonlinear optimization model on AMB performance. Finally, the best configurations identified using the technique for order preference by similarity to an ideal solution (TOPSIS) are applied to the 4-DOF AMB experimental platform. Experiments further indicate that the work in this paper provides a novel way with good performance and high reliability for solving the EMAs MOOC problem in fault-tolerant control of AMB systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA