Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Genet ; 57: 87-115, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37384733

RESUMO

Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.


Assuntos
Antozoários , Recifes de Corais , Animais , Humanos , Antozoários/genética , Metagenômica , Genoma/genética , Evolução Biológica , Mudança Climática , Ecossistema
2.
Trends Genet ; 39(7): 524-525, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37005189

RESUMO

Species and populations may adapt to climate change by microevolutionary processes. However, standing genetic variation can be insufficient for this to occur. An interesting new study of a system of rainbowfish species shows that intraspecific hybridization enriches gene pools with adaptive variation that may allow persistence in a changing climate.


Assuntos
Mudança Climática , Introgressão Genética , Adaptação Fisiológica/genética , Hibridização Genética
3.
Proc Natl Acad Sci U S A ; 119(32): e2118866119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914140

RESUMO

Exotic plant invaders pose a serious threat to native plants. However, despite showing inferior competitive ability and decreased performance, native species often subsist in invaded communities. The decline of native populations is hypothesized to be halted and eventually reversed if adaptive evolutionary changes can keep up with the environmental stress induced by invaders, that is, when population extinction is prevented by evolutionary rescue (ER). Nevertheless, evidence for the role of ER in postinvasion persistence of native flora remains scarce. Here, I explored the population density of a native forb, Veronica chamaedrys, and evaluated the changes in the shade-responsive traits of its populations distributed along the invasion chronosequence of an exotic transformer, Heracleum mantegazzianum, which was replicated in five areas. I found a U-shaped population trajectory that paralleled the evolution of plasticity to shade. Whereas V. chamaedrys genotypes from intact, more open sites exhibited a shade-tolerance strategy (pronounced leaf area/mass ratio), reduced light availability at the invaded sites selected for a shade-avoidance strategy (greater internode elongation). Field experiments subsequently confirmed that the shifts in shade-response strategies were adaptive and secured postinvasion population persistence, as indicated by further modeling. Alternative ecological mechanisms (habitat improvement or arrival of immigrants) were less likely explanations than ER for the observed population rebound, although the contribution of maternal effects cannot be dismissed. These results suggest that V. chamaedrys survived because of adaptive evolutionary changes operating on the same timescale as the invasion-induced stress, but the generality of ER for postinvasion persistence of native plants remains unknown.


Assuntos
Evolução Biológica , Extinção Biológica , Espécies Introduzidas , Plantas , Veronica , Ecossistema , Heracleum/crescimento & desenvolvimento , Heracleum/efeitos da radiação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Luz Solar , Veronica/crescimento & desenvolvimento , Veronica/efeitos da radiação
4.
Ecol Lett ; 27(3): e14404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519842

RESUMO

Behavioural flexibility might help animals cope with costs of genetic variants under selection, promoting genetic adaptation. However, it has proven challenging to experimentally link behavioural flexibility to the predicted compensation of population-level fitness. We tested this prediction using the field cricket Teleogryllus oceanicus. In Hawaiian populations, a mutation silences males and protects against eavesdropping parasitoids. To examine how the loss of this critical acoustic communication signal impacts offspring production and mate location, we developed a high-resolution, individual-based tracking system for low-light, naturalistic conditions. Offspring production did not differ significantly in replicate silent versus singing populations, and fitness compensation in silent conditions was associated with significantly increased locomotion in both sexes. Our results provide evidence that flexible behaviour can promote genetic adaptation via compensation in reproductive output and suggest that rapid evolution of animal communication systems may be less constrained than previously appreciated.


Assuntos
Críquete , Gryllidae , Masculino , Feminino , Animais , Comportamento Sexual Animal , Vocalização Animal , Havaí , Mutação , Gryllidae/genética , Evolução Biológica
5.
Ecol Lett ; 27(1): e14355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225825

RESUMO

Sexual selection and the evolution of costly mating strategies can negatively impact population viability and adaptive potential. While laboratory studies have documented outcomes stemming from these processes, recent observations suggest that the demographic impact of sexual selection is contingent on the environment and therefore may have been overestimated in simple laboratory settings. Here we find support for this claim. We exposed copies of beetle populations, previously evolved with or without sexual selection, to a 10-generation heatwave while maintaining half of them in a simple environment and the other half in a complex environment. Populations with an evolutionary history of sexual selection maintained larger sizes and more stable growth rates in complex (relative to simple) environments, an effect not seen in populations evolved without sexual selection. These results have implications for evolutionary forecasting and suggest that the negative demographic impact of sexually selected mating strategies might be low in natural populations.


Assuntos
Preferência de Acasalamento Animal , Seleção Sexual , Animais , Evolução Biológica , Comportamento Sexual Animal , Demografia , Seleção Genética
6.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37552934

RESUMO

Crop domestication and the subsequent expansion of crops have long been thought of as a linear process from a wild ancestor to a domesticate. However, evidence of gene flow from locally adapted wild relatives that provided adaptive alleles into crops has been identified in multiple species. Yet, little is known about the evolutionary consequences of gene flow during domestication and the interaction of gene flow and genetic load in crop populations. We study the pseudo-cereal grain amaranth that has been domesticated three times in different geographic regions of the Americas. We quantify the amount and distribution of gene flow and genetic load along the genome of the three grain amaranth species and their two wild relatives. Our results show ample gene flow between crop species and between crops and their wild relatives. Gene flow from wild relatives decreased genetic load in the three crop species. This suggests that wild relatives could provide evolutionary rescue by replacing deleterious alleles in crops. We assess experimental hybrids between the three crop species and found genetic incompatibilities between one Central American grain amaranth and the other two crop species. These incompatibilities might have created recent reproductive barriers and maintained species integrity today. Together, our results show that gene flow played an important role in the domestication and expansion of grain amaranth, despite genetic species barriers. The domestication of plants was likely not linear and created a genomic mosaic by multiple contributors with varying fitness effects for today's crops.


Assuntos
Domesticação , Grão Comestível , Grão Comestível/genética , Evolução Biológica , Produtos Agrícolas/genética , Fluxo Gênico
7.
Proc Biol Sci ; 291(2016): 20231553, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351805

RESUMO

Populations declining toward extinction can persist via genetic adaptation in a process called evolutionary rescue. Predicting evolutionary rescue has applications ranging from conservation biology to medicine, but requires understanding and integrating the multiple effects of a stressful environmental change on population processes. Here we derive a simple expression for how generation time, a key determinant of the rate of evolution, varies with population size during evolutionary rescue. Change in generation time is quantitatively predicted by comparing how intraspecific competition and the source of maladaptation each affect the rates of births and deaths in the population. Depending on the difference between two parameters quantifying these effects, the model predicts that populations may experience substantial changes in their rate of adaptation in both positive and negative directions, or adapt consistently despite severe stress. These predictions were then tested by comparison to the results of individual-based simulations of evolutionary rescue, which validated that the tolerable rate of environmental change varied considerably as described by analytical results. We discuss how these results inform efforts to understand wildlife disease and adaptation to climate change, evolution in managed populations and treatment resistance in pathogens.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Retroalimentação , Densidade Demográfica , Adaptação Fisiológica/genética
8.
Proc Biol Sci ; 291(2025): 20240805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917864

RESUMO

Evolutionary rescue occurs when the genetic evolution of adaptation saves a population from decline or extinction after environmental change. The evolution of resistance to pesticides is a special scenario of abrupt environmental change, where rescue occurs under (very) strong selection for one or a few de novo resistance mutations of large effect. Here, a population genetic model of evolutionary rescue with density-dependent population change is developed, with a focus on deriving results that are important to resistance management. Massive stochastic simulations are used to generate observations, which are accurately predicted using analytical approximations. Key results include the probability density function for the time to resistance and the probability of population extinction. The distribution of resistance times shows a lag period, a narrow peak and a long tail. Surprisingly, the mean time to resistance can increase with the strength of selection because, if a mutation does not occur early on, then its emergence is delayed by the pesticide reducing the population size. The probability of population extinction shows a sharp transition, in that when extinction is possible, it is also highly likely. Consequently, population suppression and (local) eradication can be theoretically achievable goals, as novel strategies to delay resistance evolution.


Assuntos
Praguicidas , Evolução Biológica , Resistência a Medicamentos/genética , Modelos Genéticos , Mutação , Seleção Genética , Animais , Evolução Molecular
9.
J Evol Biol ; 37(6): 665-676, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466641

RESUMO

In today's rapidly changing world, it is critical to examine how animal populations will respond to severe environmental change. Following events such as pollution or deforestation that cause populations to decline, extinction will occur unless populations can adapt in response to natural selection, a process called evolutionary rescue. Theory predicts that immigration can delay extinction and provide novel genetic material that can prevent inbreeding depression and facilitate adaptation. However, when potential source populations have not experienced the new environment before (i.e., are naive), immigration can counteract selection and constrain adaptation. This study evaluated the effects of immigration of naive individuals on evolutionary rescue using the red flour beetle, Tribolium castaneum, as a model system. Small populations were exposed to a challenging environment, and 3 immigration rates (0, 1, or 5 migrants per generation) were implemented with migrants from a benign environment. Following an initial decline in population size across all treatments, populations receiving no immigration gained a higher growth rate one generation earlier than those with immigration, illustrating the constraining effects of immigration on adaptation. After 7 generations, a reciprocal transplant experiment found evidence for adaptation regardless of immigration rate. Thus, while the immigration of naive individuals briefly delayed adaptation, it did not increase extinction risk or prevent adaptation following environmental change.


Assuntos
Migração Animal , Tribolium , Animais , Tribolium/fisiologia , Adaptação Fisiológica , Meio Ambiente , Evolução Biológica , Dinâmica Populacional , Densidade Demográfica
10.
Can J Microbiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875715

RESUMO

The number of copies of each chromosome, or ploidy, of an organism is a major genomic factor affecting adaptation. We set out to determine how ploidy can impact the outcome of evolution, as well as the likelihood of evolutionary rescue, using short-term experiments with yeast (Saccharomyces cerevisiae) in a high concentration of the fungicide nystatin. In similar experiments using haploid yeast, the genetic changes underlying evolutionary rescue were highly repeatable, with all rescued lines containing a single mutation in the ergosterol biosynthetic pathway. All of these beneficial mutations were recessive, which led to the expectation that diploids would find alternative genetic routes to adaptation. To test this, we repeated the experiment using both haploid and diploid strains and found that diploid populations did not evolve resistance. Although diploids are able to adapt at the same rate as haploids to a lower, not fully inhibitory, concentration of nystatin, the present study suggests that diploids are limited in their ability to adapt to an inhibitory concentration of nystatin, while haploids may undergo evolutionary rescue. These results demonstrate that ploidy can tip the balance between adaptation and extinction when organisms face an extreme environmental change.

11.
Ecol Lett ; 26(12): 2110-2121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807971

RESUMO

Evolutionary rescue may allow species to survive environmental change, but how this mechanism operates in food webs is poorly understood. Here, the evolutionary rescue was investigated in a small model food web, systematically allowing the evolution of each single species in order to reveal how its adaptation affects the persistence of itself and others. The impact of evolution was highly species-specific and not necessarily positive: only one species, the specialist predator, consistently had a positive impact on overall persistence. Most strikingly, evolution overwhelmingly affected other species: rescue of others (indirect rescue) was far more frequent than self-rescue, and negative effects were nearly always indirect. This demonstrates that evolutionary rescue in food webs is inextricably bound up with species interactions, as the effects of evolution in one species ripple through the entire community. It is therefore critically important to consider the food web context in efforts to understand how species may survive global change.


Assuntos
Evolução Biológica , Cadeia Alimentar
12.
Ecol Lett ; 26 Suppl 1: S16-S21, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840027

RESUMO

Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.


Assuntos
Evolução Biológica , Ecossistema , Dinâmica Populacional , Genética Populacional , Crescimento Demográfico
13.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815519

RESUMO

The observed mutational spectrum of adaptive outcomes can be constrained by many factors. For example, mutational biases can narrow the observed spectrum by increasing the rate of mutation at isolated sites in the genome. In contrast, complex environments can shift the observed spectrum by defining fitness consequences of mutational routes. We investigate the impact of different nutrient environments on the evolution of motility in Pseudomonas fluorescens Pf0-2x (an engineered non-motile derivative of Pf0-1) in the presence and absence of a strong mutational hotspot. Previous work has shown that this mutational hotspot can be built and broken via six silent mutations, which provide rapid access to a mutation that rescues swimming motility and confers the strongest swimming phenotype in specific environments. Here, we evolved a hotspot and non-hotspot variant strain of Pf0-2x for motility under nutrient-rich (LB) and nutrient-limiting (M9) environmental conditions. We observed the hotspot strain consistently evolved faster across all environmental conditions and its mutational spectrum was robust to environmental differences. However, the non-hotspot strain had a distinct mutational spectrum that changed depending on the nutrient environment. Interestingly, while alternative adaptive mutations in nutrient-rich environments were equal to, or less effective than, the hotspot mutation, the majority of these mutations in nutrient-limited conditions produced superior swimmers. Our competition experiments mirrored these findings, underscoring the role of environment in defining both the mutational spectrum and the associated phenotype strength. This indicates that while mutational hotspots working in concert with natural selection can speed up access to robust adaptive mutations (which can provide a competitive advantage in evolving populations), they can limit exploration of the mutational landscape, restricting access to potentially stronger phenotypes in specific environments.


Assuntos
Mutação , Fenótipo
14.
Proc Biol Sci ; 290(1999): 20230770, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37253425

RESUMO

No environment is constant over time, and environmental fluctuations impact the outcome of evolutionary dynamics. Survival of a population not adapted to some environmental conditions is threatened unless, for example, a mutation rescues it, an eco-evolutionary process termed evolutionary rescue. We here investigate evolutionary rescue in an environment that fluctuates between a favourable state, in which the population grows, and a harsh state, in which the population declines. We develop a stochastic model that includes both population dynamics and genetics. We derive analytical predictions for the mean extinction time of a non-adapted population given that it is not rescued, the probability of rescue by a mutation, and the mean appearance time of a rescue mutant, which we validate using numerical simulations. We find that stochastic environmental fluctuations, resulting in quasi-periodic environmental changes, accelerate extinction and hinder evolutionary rescue compared with deterministic environmental fluctuations, resulting in periodic environmental changes. We demonstrate that high equilibrium population sizes and per capita growth rates maximize the chances of evolutionary rescue. We show that an imperfectly harsh environment, which does not fully prevent births but makes the death rate to birth rate ratio much greater than unity, has almost the same rescue probability as a perfectly harsh environment, which fully prevents births. Finally, we put our results in the context of antimicrobial resistance and conservation biology.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Adaptação Fisiológica/genética , Meio Ambiente , Mutação , Dinâmica Populacional
15.
Proc Biol Sci ; 290(1998): 20230336, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161337

RESUMO

Populations often vary in their evolutionary responses to a shared environmental perturbation. A key hurdle in building more predictive models of rapid evolution is understanding this variation-why do some populations and traits evolve while others do not? We combined long-term demographic and environmental data, estimates of quantitative genetic variance components, a resurrection experiment and individual-based evolutionary simulations to gain mechanistic insights into contrasting evolutionary responses to a severe multi-year drought. We examined five traits in two populations of a native California plant, Clarkia xantiana, at three time points over 7 years. Earlier flowering phenology evolved in only one of the two populations, though both populations experienced similar drought severity and demographic declines and were estimated to have considerable additive genetic variance for flowering phenology. Pairing demographic and experimental data with evolutionary simulations suggested that while seed banks in both populations probably constrained evolutionary responses, a stronger seed bank in the non-evolving population resulted in evolutionary stasis. Gene flow through time via germ banks may be an important, underappreciated control on rapid evolution in response to extreme environmental perturbations.


Assuntos
Aclimatação , Evolução Biológica , Clarkia , Mudança Climática , Secas , Aclimatação/genética , Dinâmica Populacional , Clarkia/genética , Clarkia/crescimento & desenvolvimento , Fluxo Gênico , Germinação , Sementes/genética , Sementes/crescimento & desenvolvimento
16.
New Phytol ; 239(1): 374-387, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36651081

RESUMO

Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.


Assuntos
Meio Ambiente , Variação Genética , Adaptação Fisiológica/genética , Fenótipo , Aclimatação , Evolução Biológica
17.
Theor Popul Biol ; 154: 102-117, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37923145

RESUMO

Plasmids may carry genes coding for beneficial traits and thus contribute to adaptation of bacterial populations to environmental stress. Conjugative plasmids can horizontally transfer between cells, which a priori facilitates the spread of adaptive alleles. However, if the potential recipient cell is already colonized by another incompatible plasmid, successful transfer may be prevented. Competition between plasmids can thus limit horizontal transfer. Previous modeling has indeed shown that evolutionary rescue by a conjugative plasmid is hampered by incompatible resident plasmids in the population. If the rescue plasmid is a mutant variant of the resident plasmid, both plasmids transfer at the same rates. A high conjugation rate then has two, potentially opposing, effects - a direct positive effect on spread of the rescue plasmid and an increase in the fraction of resident plasmid cells. This raises the question whether a high conjugation rate always benefits evolutionary rescue. In this article, we systematically analyze three models of increasing complexity to disentangle the benefits and limits of increasing horizontal gene transfer in the presence of plasmid competition and plasmid costs. We find that the net effect can be positive or negative and that the optimal transfer rate is thus not always the highest one. These results can contribute to our understanding of the many facets of plasmid-driven adaptation and the wide range of transfer rates observed in nature.


Assuntos
Evolução Biológica , Conjugação Genética , Plasmídeos/genética , Transferência Genética Horizontal , Bactérias/genética
18.
Theor Popul Biol ; 153: 37-49, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328113

RESUMO

A population experiencing habitat loss can avoid extinction by undergoing genetic adaptation-a process known as evolutionary rescue. Here we analytically approximate the probability of evolutionary rescue via a niche-constructing mutation that allows carriers to convert a novel, unfavorable reproductive habitat to a favorable state at a cost to their fecundity. We analyze competition between mutants and non-niche-constructing wild types, who ultimately require the constructed habitats to reproduce. We find that over-exploitation of the constructed habitats by wild types can generate damped oscillations in population size shortly after mutant invasion, thereby decreasing the probability of rescue. Such post-invasion extinction is less probable when construction is infrequent, habitat loss is common, the reproductive environment is large, or the population's carrying capacity is small. Under these conditions, wild types are less likely to encounter the constructed habitats and, consequently, mutants are more likely to fix. These results suggest that, without a mechanism that deters wild type inheritance of the constructed habitats, a population undergoing rescue via niche construction may remain prone to short-timescale extinction despite successful mutant invasion.


Assuntos
Evolução Biológica , Ecossistema , Mutação , Adaptação Fisiológica/genética , Conservação dos Recursos Naturais
19.
J Evol Biol ; 36(4): 641-649, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808770

RESUMO

Drug rotation (cycling), in which multiple drugs are administrated alternatively, has the potential for limiting resistance evolution in pathogens. The frequency of drug alternation could be a major factor to determine the effectiveness of drug rotation. Drug rotation practices often have low frequency of drug alternation, with an expectation of resistance reversion. Here we, based on evolutionary rescue and compensatory evolution theories, suggest that fast drug rotation can limit resistance evolution in the first place. This is because fast drug rotation would give little time for the evolutionarily rescued populations to recover in population size and genetic diversity, and thus decrease the chance of future evolutionary rescue under alternate environmental stresses. We experimentally tested this hypothesis using the bacterium Pseudomonas fluorescens and two antibiotics (chloramphenicol and rifampin). Increasing drug rotation frequency reduced the chance of evolutionary rescue, and most of the finally surviving bacterial populations were resistant to both drugs. Drug resistance incurred significant fitness costs, which did not differ among the drug treatment histories. A link between population sizes during the early stages of drug treatment and the end-point fates of populations (extinction vs survival) suggested that population size recovery and compensatory evolution before drug shift increase the chance of population survival. Our results therefore advocate fast drug rotation as a promising approach to reduce bacterial resistance evolution, which in particular could be a substitute for drug combination when the latter has safety risks.


Assuntos
Antibacterianos , Bactérias , Rotação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Mutação , Evolução Molecular
20.
J Evol Biol ; 36(10): 1525-1538, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37776088

RESUMO

Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA