Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(7): e2104224, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866332

RESUMO

Lithium batteries with high electrode thickness always possess a poor battery property due to electrode polarization along the thickness direction. Herein, a concept that the electrode polarization can be reduced through the fabrication of 3D ordered interconnected nanostructure in the electrode is put forward. A nitrogen-doped carbon photonic crystal (NCPC) with the ordered interconnected nanostructure is used in the electrode to prove the concept. NCPC can provide a fast charge transfer rate along the thickness direction and a uniform distribution for electrons and lithium ions, resulting in diminishing the concentration polarization and concentration gradient. When NCPC works for lithium-sulfur battery, the thick electrode achieves a fast charge transfer rate and a small voltage gap as well as the thin electrode. The 200 µm thick sulfur cathode obtains a specific capacity (87%) as high as 100 µm thick sulfur cathode. In contrast, the capacity ratio of the electrode made by the traditional coating method is only 45%.

2.
Small ; 18(41): e2203948, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084223

RESUMO

The poor conductivity, inert charge transmission efficiency, and irreversible Na+ trapping of Na2 Ti3 O7 result in retardant electrons/ions transportation and deficient sodium-ion storage efficiency, leading to sluggish reaction kinetics. To address these issues, an urchin-like Ti2 CTx /Na2 Ti3 O7 (Ti2 C/NTO) heterostructure sphere consisting of Ti2 C/NTO heterostructure nanobelts array is developed via a facile one-step in situ hydrothermal strategy. The Ti2 C/NTO heterostructure can obviously decrease Na+ diffusion barriers and increase electronic conductivity to improve reaction kinetics due to the built-in electric field effect and high-quantity interface region. In addition, the urchin-like vertically aligned nanobelts can reduce the diffusion distance of electrons and ions, provide favored electrolyte infiltration, adapt large volume expansion, and mitigate the aggregation to maintain structural stability during cycles, further enhancing the reaction kinetics. Furthermore, the Ti2 C/NTO heterostructure can effectively suppress many unwanted side reactions between reactive surface sites of NTO and electrolyte as well as irreversible trapping of Na+ . As a result, systematic electrochemical investigations demonstrate that the Ti2 C/NTO heterostructure as an anode material for record sodium-ion storage delivers the highest reversible capacity, the best cycling stability with 0.0065% decay rate for 4500 cycles at 2.0 A g-1 , and excellent rate capability of 172.1 mAh g-1 at 10.0 A g-1 .

3.
Small ; 15(19): e1804764, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884157

RESUMO

An electrocatalyst for oxygen evolution reaction (OER) is essential in the realization of renewable energy conversion technologies, but its large overpotential, slow charge transfer, and degradation of surface reaction sites are yet to be overcome. Here, it is found that the metallic nickel domains and high-valence reduced molybdenum ions of NiFeMo electrocatalysts grown on a 3D conductive and porous electrode without using binders enable ultrahigh performance in OER. High resolution-transmission electron microscope and extended X-ray absorption fine structure analyses show that metallic nickel domains with Ni-Ni bonds are generated on the catalyst surface via a dry synthesis using nitrogen plasma. Also, Mo K-edge X-ray absorption near-edge spectroscopy reveals that Mo6+ ions are reduced into high-valence modulating Mo4+ ions. With the metallic nickel domains facilitating the adsorption of oxygen intermediates to low-coordinated Ni0 and the Mo4+ pulling their electrons, the catalyst exhibits about 60-fold higher activity than a Mo-free NiFe catalyst, while giving about threefold faster charge transfer along with longer stability over 100 h and repeated 100 cycles compared to a bare NiFeMo catalyst. Additionally, these metallic domains and high-valence modulating metal ions are exhibited to give high Faradaic efficiency over 95%.

4.
ACS Appl Mater Interfaces ; 14(31): 35495-35503, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912961

RESUMO

Perovskite solar cells (PSCs) have great potential as an efficient solar energy harvesting system due to their outstanding optoelectronic properties, but the charge accumulation and recombination, as well as the moisture-induced degradation of the light-absorbing perovskite layers, remain great bottlenecks in practical applications for future technology. As a solution to this challenge, here we report a strategy to realize moisture-stable PSCs allowing fast charge transfer that, in turn, leads to high power conversion efficiency (PCE). Hybridization of hygroscopic copper(II) benzene-1,3,5-tricarboxylate metal-organic frameworks (Cu-BTC MOFs) with a light-absorbing perovskite layer for PSCs, where a moderate level of moisture attracted by Cu-BTC MOFs during the synthesis step, leads to enhanced perovskite crystallization. Besides, the perovskite-MOF hybrid facilitates the transfer of photoexcited electrons from the perovskite to TiO2 by providing additional channels for electron extraction. This enables a high PCE of 20.5% in a triple-cation perovskite-MOF device with negligible hysteresis compared to reference devices. Moreover, the perovskite-MOF hybrid exhibits high stability in ambient air under dark conditions over a long period (up to 22 months), while the unmodified counterpart quickly decomposes into PbI2. Consequently, this work provides a promising clue to realizeing fast charge transfer and high stability for high-performance PSCs.

5.
ACS Nano ; 16(8): 13101-13110, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35946592

RESUMO

Lithium (Li) metal batteries with high energy density are of great promise for next-generation energy storage; however, they suffer from severe Li dendritic growth and an unstable solid electrolyte interphase. In this study, a mixed ionic and electronic conductive (MIEC) interphase layer with an adjustable ratio assembled by ZnO and Zn nanoparticles is developed. During the initial cycle, the in situ formed Li2O with high ionic conductivity and a lithiophilic LiZn alloy with high electronic conductivity enable fast Li+ transportation in the interlayer and charge transfer at the ion/electron conductive junction, respectively. The optimized interface kinetics is achieved by balancing the ion migration and charge transfer in the MIEC Li2O-LiZn interphase. As a result, the symmetric cell with MIEC interphase delivers superior cycling stability of over 1200 h. Also, Li||Zn-ZnO@PP||LFP (LFP = LiFePO4) full cells exhibit long cyclic life for 2000 cycles with a very high capacity retention of 91.5% at a high rate of 5 C and stable cycling for 350 cycles at a high LFP loading mass of 13.27 mg cm-2.

6.
ACS Nano ; 15(12): 18777-18793, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34723464

RESUMO

Graphitic carbon nitride with ordered two-dimensional structure displays multiple properties, including tunable structure, suitable bandgap, high stability, and facile synthesis. Many achievements on this material have been made in photocatalysis, but the advantages have not yet been fully explored in electrochemical fields. The bulk structure with low conductivity impedes charge-transfer kinetics during electrochemical processes. Excessive nitrogen content leads to insufficient charge transfer, while bulk structures produce tortuous channels for mass transport. Some attempts have been made to address these issues by nanostructure engineering, such as ultrathin structure design, heterogeneous composition, defect engineering, and morphology control. These structure-engineered nanomaterials have been successfully applied in electrochemical fields, including ionic actuators, flexible supercapacitors, lithium-ion batteries, and electrochemical sensors. Herein, a timely review on the latest advances in graphitic carbon nitride through various engineering strategies for electrochemical applications has been summarized. A perspective on critical challenges and future research directions is highlighted for graphitic carbon nitride in electrochemistry on the basis of existing research works and our experimental experience.

7.
ACS Appl Mater Interfaces ; 11(47): 44366-44374, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670934

RESUMO

A cobalt-phosphate (Co-Pi) catalyst having octahedral CoO6 molecular units as reaction sites is a key component in photoelectrochemical (PEC) water oxidation systems, but its limited adsorption sites for oxygen-evolving intermediates (*OH, *OOH), slow charge transfer rates, and fast degradation of reaction sites are yet to be overcome. Here, we report that Co-Pi nanoparticles with low-coordinate Co ions and doped nitrogen atoms could be decorated on hematite nanorod arrays to form N-CoPi/hematite composites. Moreover, the local atomic configuration and bond distance studies show that trivalent Co3+ states are partially reduced through nitrogen radicals in the plasma to low-coordinate bivalent Co2+ states playing as the facile adsorption sites of oxygen-evolving intermediates due to the decreased activation barrier for water oxidation. Electron transport is also reinforced by nitrogen species due to the formation of hybridizing N 2p orbitals that give the acceptor levels in the bandgap. As a result, both the incident photon-to-electron conversion efficiency and the charge transfer resistance on N-CoPi/hematite outperform those on a bare hematite by about 3 fold. Furthermore, N-CoPi/hematite gives high activity retention over 90% after the long operation of water oxidation, in support of the reaction sites on N-CoPi not degrading during the successive water oxidation.

8.
ACS Appl Mater Interfaces ; 6(23): 21086-92, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25402230

RESUMO

Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 µmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 µmol L(-1) for DA, EP, and AC, respectively.


Assuntos
Acetaminofen/isolamento & purificação , Dopamina/isolamento & purificação , Epinefrina/isolamento & purificação , Nanotubos de Carbono/química , Acetaminofen/química , Técnicas Biossensoriais/métodos , Dopamina/química , Eletrodos , Disruptores Endócrinos/química , Disruptores Endócrinos/isolamento & purificação , Epinefrina/química , Humanos , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA