Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Pharm ; 656: 124119, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621616

RESUMO

Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.


Assuntos
Carragenina , Fibroblastos , Liofilização , Cicatrização , Liofilização/métodos , Cicatrização/efeitos dos fármacos , Animais , Porosidade , Camundongos , Carragenina/química , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Alicerces Teciduais , Adesão Celular , Masculino , Pele/metabolismo
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35360, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247252

RESUMO

Nontraumatic osteonecrosis of the femoral head (ONFH) is a refractory condition that commonly results in femoral head collapse and degenerative arthritis of the hip. In the early stages, surgical procedures for hip preservation, including core decompression (CD), have been developed to prevent progressive collapse of the femoral head. Optimization of bone regeneration and biological augmentation may further enhance the therapeutic efficacy of CD for ONFH. Thus, combining CD with cell-based therapy has recently been proposed. In fact, patients treated with cell-based therapy using autologous bone marrow concentrate demonstrate improved survivorship of the femoral head, compared with conventional CD alone. Preclinical research studies to investigate adjunctive therapies for CD often utilize the rabbit model of corticosteroid-induced ONFH. Mesenchymal stem cells (MSCs) are known to promote osteogenesis and angiogenesis, and decrease inflammation in bone. Local drug delivery systems have the potential to achieve targeted therapeutic effects by precisely controlling the drug release rate. Scaffolds can provide an osteoconductive structural framework to facilitate the repair of osteonecrotic bone tissue. We focused on the combination of both cell-based and scaffold-based therapies for bone tissue regeneration in ONFH. We hypothesized that combining CD and osteoconductive scaffolds would provide mechanical strength and structural cell guidance; and that combining CD and genetically modified (GM) MSCs to express relevant cytokines, chemokines, and growth factors would promote bone tissue repair. We developed GM MSCs that overexpress the anti-inflammatory, pro-reconstructive cytokines platelet-derived growth factor-BB to provide MSCs with additional benefits and investigated the efficacy of combinations of these GM MSCs and scaffolds for treatment of ONFH in skeletally mature male New Zealand white rabbits. In the future, the long-term safety, efficacy, durability, and cost-effectiveness of these and other biological and mechanical treatments must be demonstrated for the patients affected by ONFH.


Assuntos
Cabeça do Fêmur , Procedimentos Ortopédicos , Humanos , Animais , Masculino , Coelhos , Corticosteroides , Regeneração Óssea , Citocinas
3.
J Biomed Mater Res A ; 111(8): 1120-1134, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36606330

RESUMO

Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of ß-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.


Assuntos
Células-Tronco Mesenquimais , Osteonecrose , Animais , Coelhos , Cabeça do Fêmur/patologia , Cabeça do Fêmur/cirurgia , Becaplermina , Interleucina-4/farmacologia , Regeneração Óssea , Células-Tronco Mesenquimais/patologia , Corticosteroides/farmacologia , Osteonecrose/induzido quimicamente , Osteonecrose/terapia , Osteonecrose/patologia
4.
J Biomed Mater Res A ; 109(9): 1657-1669, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687800

RESUMO

One of the main challenges in treating osteochondral lesions via tissue engineering approach is providing scaffolds with unique characteristics to mimic the complexity. It has led to application of heterogeneous scaffolds as a potential candidate for engineering of osteochondral tissues, in which graded multilayered-structure should promote bone and cartilage growth. By designing three-dimensional (3D)-nanofibrous scaffolds mimicking the native extracellular matrix's nanoscale structure, cells can grow in controlled conditions and regenerate the damaged tissue. In this study, novel 3D-functionality graded nanofibrous scaffolds composed of five layers based on different compositions containing polycaprolactone(PCL)/gelatin(Gel)/nanohydroxyapatite (nHA) for osteoregeneration and chitosan(Cs)/polyvinylalcohol(PVA) for chondral regeneration are introduced. This scaffold is fabricated by electrospinning technique using spring as collector to create 3D-nanofibrous scaffolds. Fourier-transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, mechanical compression test, porosimetry, and water uptake studies were applied to study each layer's physicochemical properties and whole functionally graded scaffold. Besides, biodegradation and biological studies were done to investigate biological performance of scaffold. Results showed that each layer has a fibrous structure with continuous nanofibers with improved pore size and porosity of novel 3D scaffold (6-13 µm and 90%) compared with two-dimensional (2D) mat (2.2 µm and 19.3%) with higher water uptake capacity (about 100 times of 2D mat). Compression modulus of electrospun scaffold was increased to 78 MPa by adding nHA. The biological studies revealed that the layer designed for osteoregeneration could improve cell proliferation rate in comparison to the layer designed for chondral regeneration. These results showed such structure possesses a promising potential for the treatment of osteochondral defects.


Assuntos
Materiais Biomiméticos/química , Condrogênese , Nanocompostos/química , Nanofibras/química , Osteogênese , Regeneração , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Morte Celular , Proliferação de Células , Força Compressiva , Humanos , Cinética , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Poliésteres/química , Porosidade , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
5.
Materials (Basel) ; 13(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182421

RESUMO

Functional graded materials are gaining increasing attention in tissue engineering (TE) due to their superior mechanical properties and high biocompatibility. Triply periodic minimal surface (TPMS) has the capability to produce smooth surfaces and interconnectivity, which are very essential for bone scaffolds. To further enhance the versatility of TPMS, a parametric design method for functionally graded scaffold (FGS) with programmable pore size distribution is proposed in this study. Combining the relative density and unit cell size, the effect of design parameters on the pore size was also considered to effectively govern the distribution of pores in generating FGS. We made use of Gyroid to generate different types of FGS, which were then fabricated using selective laser melting (SLM), followed by investigation and comparison of their structural characteristics and mechanical properties. Their morphological features could be effectively controlled, indicating that TPMS was an effective way to achieve functional gradients which had bone-mimicking architectures. In terms of mechanical performance, the proposed FGS could achieve similar mechanical response under compression tests compared to the reference FGS with the same range of density gradient. The proposed method with control over pore size allows for effectively generating porous scaffolds with tailored properties which are potentially adopted in various fields.

6.
J Orthop Res ; 36(3): 1002-1011, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28782831

RESUMO

Osteonecrosis of the femoral head (ONFH) is a debilitating disease that results in progressive collapse of the femoral head and subsequent degenerative arthritis. Few treatments provide both sufficient mechanical support and biological cues for regeneration of bone and vascularity when the femoral head is still round and therefore salvageable. We designed and 3D printed a functionally graded scaffold (FGS) made of polycaprolactone (PCL) and ß-tricalcium phosphate (ß-TCP) with spatially controlled porosity, degradation, and mechanical strength properties to reconstruct necrotic bone tissue in the femoral head. The FGS was designed to have low porosity segments (15% in proximal and distal segments) and a high porosity segment (60% in middle segment) according to the desired mechanical and osteoconductive properties at each specific site after implantation into the femoral head. The FGS was inserted into a bone tunnel drilled in rabbit femoral neck and head, and at 8 weeks after implantation, the tissue formation as well as scaffold degradation was analyzed. Micro-CT analysis demonstrated that the FGS-filled group had a significantly higher bone ingrowth ratio compared to the empty-tunnel group, and the difference was higher at the distal low porosity segments. The in vivo degradation rate of the scaffold was higher in the proximal and distal segments than in the middle segment. Histological analysis of both non-decalcified and calcified samples clearly indicated new bone ingrowth and bone marrow-containing bone formation across the FGS. A 3D printed PCL-ß-TCP FGS appears to be a promising customized resorbable load-bearing implant for treatment of early stage ONFH. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1002-1011, 2018.


Assuntos
Necrose da Cabeça do Fêmur/cirurgia , Alicerces Teciduais , Animais , Masculino , Teste de Materiais , Osseointegração , Porosidade , Coelhos , Microtomografia por Raio-X
7.
J Mech Behav Biomed Mater ; 63: 303-313, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27442921

RESUMO

A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanical tests have been carried out both in air and immersing the specimens in phosphate buffered saline (PBS) solution at 37°C, in order to evaluate the elastic modulus and the interlayer adhesion strength. Fibroblasts and osteoblasts have been cultured and co-cultured in order to investigate the cells permeation trough the different layers. The results indicate that the presented method is appropriate for the preparation of multiphasic porous scaffolds with tunable morphological and mechanical characteristics. Furthermore, the cells seeded were found to grow with a different trend trough the different layers thus demonstrating that the presented device has good potential to be used in interface tissue regeneration applications.


Assuntos
Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Células Cultivadas , Técnicas de Cocultura , Módulo de Elasticidade , Fibroblastos/citologia , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Porosidade
8.
J Mech Behav Biomed Mater ; 54: 8-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26410761

RESUMO

Interface tissue engineering (ITE) is used to repair or regenerate interface living tissue such as for instance bone and cartilage. This kind of tissues present natural different properties from a biological and mechanical point of view. With the aim to imitating the natural gradient occurring in the bone-cartilage tissue, several technologies and methods have been proposed over recent years in order to develop polymeric functionally graded scaffolds (FGS). In this study three-layered scaffolds with a pore size gradient were developed by melt mixing polylactic acid (PLA) and two water-soluble porogen agents: sodium chloride (NaCl) and polyethylene glycol (PEG). Pore dimensions were controlled by NaCl granulometry while PEG solvation created a micropores network within the devices. Scaffolds were characterized from a morphological and mechanical point of view in order to find a correlation between the preparation method, the pore architecture and compressive mechanical behavior. Biological tests were also performed in order to study the effect of pore size gradient on the permeation of different cell lines in co-culture. To imitate the physiological work condition, compressive tests were also performed in phosphate buffered saline (PBS) solution at 37°C. The presented preparation method permitted to prepare three-layered scaffolds with high control of porosity and pore size distribution. Furthermore mechanical behaviors were found to be strongly affected by pore architecture of tested devices as well as the permeation of osteoblast and fibroblast in-vitro.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Ácido Láctico/química , Fenômenos Mecânicos , Polietilenoglicóis/química , Polímeros/química , Alicerces Teciduais/química , Adesividade , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Permeabilidade , Poliésteres , Porosidade , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA