Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 294(31): 11701-11711, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31186348

RESUMO

Bifidobacteria are exposed to substantial amounts of dietary ß-galactosides. Distinctive preferences for growth on different ß-galactosides are observed within Bifidobacterium members, but the basis of these preferences remains unclear. We previously described the first ß-(1,6)/(1,3)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04. This enzyme is relatively promiscuous, exhibiting only 5-fold higher efficiency on the preferred ß-(1,6)-galactobiose than the ß-(1,4) isomer. Here, we characterize the solute-binding protein (Bal6GBP) that governs the specificity of the ABC transporter encoded by the same ß-galactoside utilization locus. We observed that although Bal6GBP recognizes both ß-(1,6)- and ß-(1,4)-galactobiose, Bal6GBP has a 1630-fold higher selectivity for the former, reflected in dramatic differences in growth, with several hours lag on less preferred ß-(1,4)- and ß-(1,3)-galactobiose. Experiments performed in the presence of varying proportions of ß-(1,4)/ß-(1,6)-galactobioses indicated that the preferred substrate was preferentially depleted from the culture supernatant. This established that the poor growth on the nonpreferred ß-(1,4) was due to inefficient uptake. We solved the structure of Bal6GBP in complex with ß-(1,6)-galactobiose at 1.39 Å resolution, revealing the structural basis of this strict selectivity. Moreover, we observed a close evolutionary relationship with the human milk disaccharide lacto-N-biose-binding protein from Bifidobacterium longum, indicating that the recognition of the nonreducing galactosyl is essentially conserved, whereas the adjacent position is diversified to fit different glycosidic linkages and monosaccharide residues. These findings indicate that oligosaccharide uptake has a pivotal role in governing selectivity for distinct growth substrates and have uncovered evolutionary trajectories that shape the diversification of sugar uptake proteins within Bifidobacterium.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium animalis/crescimento & desenvolvimento , Galactosidases/metabolismo , Galactosídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Bifidobacterium animalis/enzimologia , Bifidobacterium animalis/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Galactosidases/química , Galactosídeos/química , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Especificidade por Substrato
2.
Microbiology (Reading) ; 163(10): 1420-1428, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28920844

RESUMO

Galactooligosaccharides (GOS) are mixed oligosaccharides that are mainly composed of galactosyllactoses (GLs), which include 3'-GL, 4'-GL, and 6'-GL. Data from numerous in vitro and in vivo studies have shown that GOS selectively stimulate the growth of bifidobacteria. Previously, we identified the gene locus responsible for 4'-GL utilization, but the selective routes of uptake and catabolism of 3'- and 6'-GL remain to be elucidated. In this study, we used differential transcriptomics to identify the utilization pathways of these GLs within the Bifidobacterium breve YIT 4014T strain. We found that the BBBR_RS 2305-2320 gene locus, which includes a solute-binding protein (SBP) of an ATP-binding cassette (ABC) transporter and ß-galactosidase, were up-regulated during 3'- and 6'-GL utilization. The substrate specificities of these proteins were further investigated, revealing that ß-galactosidase hydrolyzed both 3'-GL and 6'-GL efficiently. Our surface plasmon resonance results indicated that the SBP bound strongly to 6'-GL, but bound less tightly to 3'-GL. Therefore, we looked for the other SBPs for 3'-GL and found that the BBBR_RS08090 SBP may participate in 3'-GL transportation. We also investigated the distribution of these genes in 17 bifidobacterial strains, including 9 B. breve strains, and found that the ß-galactosidase genes were present in most bifidobacteria. Homologues of two ABC transporter SBP genes were found in all B. breve strains and in some bifidobacteria that are commonly present in the human gut microbiota. These results provide insights into the ability of human-resident bifidobacteria to utilize the main component of GOS in the gastrointestinal tract.

3.
Food Chem ; 456: 139968, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38861865

RESUMO

Galactooligosaccharides (GOS) are important prebiotics with function closely related to their structure. However, a comprehensive overview of the structure-function relationship is still limited due to the challenge in characterizing multiple isomers in GOS. This study presents a strategy of combining both hydrophilic interaction liquid chromatography (HILIC) retention time and tandem mass spectrometry (MS/MS) fragmentation pattern to distinguish α/ß-linkages and linkage positions of disaccharide isomers in GOS through HILIC-MS/MS analysis. The results indicated that the ratio of m/z 203.0524 to m/z 365.1054 could distinguish α/ß-linkages, while the ratios of m/z 347.0947 to m/z 365.1054, m/z 245.0642 to m/z 365.1054 and HILIC retention time could distinguish (1 â†’ 2), (1 â†’ 3), (1 â†’ 4) and (1 â†’ 6) linkages. The above rules enabled effective characterization of disaccharides in GOS-containing food samples, including milk powder, rice flour, drink, yogurt. This method can be used in the quality control of GOS and future research on the structure-specific health effects of GOS.


Assuntos
Dissacarídeos , Oligossacarídeos , Espectrometria de Massas em Tandem , Dissacarídeos/química , Oligossacarídeos/química , Animais , Prebióticos/análise , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Leite/química , Oryza/química , Iogurte/análise
4.
Front Pediatr ; 10: 894626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712635

RESUMO

Objective: To evaluate stool consistency in infants with reported hard or infrequent stools fed hydrolyzed protein formula with added prebiotics designed to promote stool softening. Methods: In this multi-center, double-blind, controlled study, eligible infants (28-300 days of age at enrollment) were randomized to: partially hydrolyzed cow's milk protein formula (PHF, 75% carbohydrate as lactose; 12 mg Mg/100 kcal; n = 49) or routine intact protein cow's milk-based infant formula (Control, 92% carbohydrate as lactose; 8 mg Mg/100 kcal; n = 51) over a 14-day period. Both formulas had a prebiotic blend (polydextrose and galactooligosaccharides, 4 g/L; 1:1 ratio). Parent-reported stool consistency (hard = 1 through watery = 5) and other daily outcomes were collected by diary. Endpoint stool consistency (mean score over last 3 days of study feeding) was the primary outcome. Adverse events were recorded. Results: Baseline stool consistency (Control: 1.4 ± 0.1, PHF: 1.4 ± 0.1) and frequency were similar between groups; the majority had hard (n = 61, 64%) or formed (n = 30, 32%) stools. Stool consistency became softer over Day 1-3 (Control: 2.5 ± 0.1, PHF: 2.6 ± 0.1) and remained similar from Day 4 to 6 through study end (post hoc analysis). For PHF vs Control, endpoint stool consistency was significantly softer (3.4 ± 0.1 vs 3.0 ± 0.1; P = 0.019) and frequency significantly higher (1.5 ± 0.1 vs 1.0 ± 0.1; P = 0.002). Crying, fussing, and appearance of pain during stooling decreased from baseline to study end in both groups. Formula intake, infant fussiness and incidence of adverse events were similar between groups. Conclusion: An infant formula designed to promote stool softening was well-tolerated and associated with softer, more frequent stools in infants with reported hard or infrequent stools.

5.
Food Chem ; 343: 128549, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189480

RESUMO

Whole grains and pulses are rich in nutrients but often avoided by individuals with gastrointestinal disorders, due to high levels of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This study investigated the impact of malting as delivery-system for endogenous enzymes. Malts from barley and wheat (naturally high in fructans), lentils and chickpeas (high in galactooligosaccharides), oat and buckwheat (low in FODMAPs) were produced. While barley and wheat malts had slightly elevated fructan-levels, in oat malt 0.8 g/100 g DM fructans were de novo synthesized. In lentils and chickpeas galactooligosaccharides diminished by 80-90%. Buckwheat did not contain any FODMAPs commonly investigated, but fagopyritols which may have a similar physiological effect. Also fagopyritols were degraded. While malted pulses and buckwheat are directly suitable for low FODMAP applications, using the combined approach of malting and fermentation, malted cereals could contribute to high nutritional values of such products.


Assuntos
Dissacarídeos/metabolismo , Grão Comestível/metabolismo , Manipulação de Alimentos/métodos , Frutanos/metabolismo , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Dissacarídeos/análise , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Frutanos/análise , Germinação , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/metabolismo , Monossacarídeos/análise , Oligossacarídeos/análise , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
6.
Food Chem ; 240: 422-429, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946292

RESUMO

This work reports a novel thermophilic ß-glucosidase (TN0602) from Thermotoga naphthophila RKU-10, demonstrating exceptionally high catalytic selectivity (100%) for the exclusive synthesis of prebiotic galactotrisaccharides (GOS3) in a high volumetric production yield of 23.28gL-1h-1 (higher than the highest value ever reported) at pH 6.5 and 75°C, with milk processing waste lactose as both the galactosyl donor and acceptor. A comparative study with commercial ß-galactosidase from Aspergillus oryzae (AO) with respect to reaction kinetics, enzyme-substrate thermodynamic binding (substrate induced fluorescence quenching) and molecular docking simulation studies showed that ß-glucosidase TN0602 has a deep catalytic "pocket" with a narrow entrance that prevents simultaneous access of lactose and GOS3 to the catalytic site, explaining its distinct catalytic specificity and reaction kinetics. The findings revealed in this work offer an improved understanding of how enzyme protein structure determines catalytic specificity, which serves as new knowledge to engineer ß-glucosidase for the biosynthesis of designer GOS.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , beta-Glucosidase/metabolismo , Animais , Cinética , Simulação de Acoplamento Molecular , Oligossacarídeos , Termodinâmica , beta-Galactosidase
7.
Carbohydr Res ; 470: 57-63, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30392564

RESUMO

ß-Galacto-oligosaccharides (GOS) are used commercially in infant nutrition, aiming to functionally replace human milk oligosaccharides (hMOS). Glucansucrases Gtf180-ΔN and GtfA-ΔN of Lactobacillus reuteri strains convert sucrose into α-glucans with (α1→6)/(α1→3) and (α1→4)/(α1→6) glucosidic linkages, respectively. Previously we reported that both glucansucrases glucosylate lactose, producing a minimum of 5 compounds (degree of polymerization 3-4) (GL34 mixture) with (α1→2/3/4) linkages. This GL34 mixture exhibited growth stimulatory effects on various probiotic bacteria. Aiming to obtain additional compounds mimicking hMOS in structure and function, we here studied glucosylation of 3 commercially available galactosyl-lactose GOS compounds. Both Gtf180-ΔN and GtfA-ΔN were unable to use 3'-galactosyl-lactose (ß3'-GL), but used sucrose to add a single glucose moiety to 4'-galactosyl-lactose (ß4'-GL) and 6'-galactosyl-lactose (ß6'-GL). ß6'-GL was elongated at its reducing glucosyl unit with an (α1→2)-linked moiety and at its non-reducing end with an (α1→4) linked moiety; ß4'-GL was only elongated at its reducing end with an (α1→2) linked moiety. Glucansucrases Gtf180-ΔN and GtfA-ΔN thus can be used to produce galactosyl-lactose-derived oligosaccharides containing (α1→2) and (α→4) glucosidic linkages, potentially with valuable bioactive (prebiotic) properties.


Assuntos
Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/enzimologia , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Configuração de Carboidratos , Glicosilação
8.
Actual. osteol ; 18(2): 60-74, oct. 2022. graf, ilus, tab
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1437640

RESUMO

Introducción: Los GOS son prebióticos naturales presentes en la leche materna que pue-den obtenerse enzimáticamente a partir de la lactosa de leche de vaca durante la fabricación de yogur. El producto lácteo resultante será reducido en lactosa y contendrá prebióticos y bacterias potencialmente probióticas. Sin embargo, mantendrá la baja relación Ca/Pi que aporta la leche de vaca, lo que podría alterar el remodelamiento óseo y la mineralización. Objetivo: comparar si un yogur reducido en lactosa que contiene GOS (YE) ofrece ventajas adicionales respecto de un yogur regular sin GOS (YR) sobre las absorciones (Abs) de Ca y Pi, retención y calidad ósea durante el crecimiento normal. Al destete, ratas machos fueron divididas en 3 grupos alimentados con AIN ́93-G (C), YE o YR durante 28 días. Resultados: YE mostró el mayor aumento de lactobacilos fecales; producción de ácidos grasos de cadena corta especialmente p, profundidad de las criptas colónicas y menor pH cecal. El %AbsCa y %AbsPi aumentó en el siguiente órden: YE> YR> C (p < 0,05). El contenido de Ca y Pi en fémur, la densidad y contenido mineral óseos y los parámetros biomecánicos fueron similares en YE y C, mientras que YR mostró valores significativa-mente menores (p < 0,05). Conclusiones: YE aumentó las Abs y biodisponibilidad de minerales, alcanzando la retención y calidad ósea de C. El aumento en las Abs observado en YR no logró obtener la retención y calidad ósea de C. Conclusión: YE habría contrarrestado el efecto negativo del mayor aporte de Pi de la leche de vaca y sería una buena estrategia para lograr el pico de masa ósea y calidad del hueso adecuados, especialmente en individuos intolerantes a la lactosa. (AU)


Breast milk contains an optimal calcium/phosphate (Ca/Pi) ratio and GOS. These natural prebiotics can be enzymatically produced via cow's milk lactose inyogurt manufacture. This milk product is low in lactose and contains prebiotics and potentially probiotic bacteria but maintains a low Ca/Pi ratio that could alter bone remodeling and mineralization. We evaluated if a lactose-reduced yogurt containing GOS (YE) offers additional advantages over regular yogurt without GOS (YR) on Ca and Pi absorption (Abs), bone retention and quality during normal growth. Weaning male rats were divided into 3 groups fed AIN'93-G (C), YE or YR for 28 days. Results: YE showed the highest increase in fecal lactobacilli; short-chain fatty acids production, especially propionate and butyrate; intestine crypt depth, and the lowest cecal pH. AbsCa% and AbsPi% increased in this order: YE> YR> C (p <0.05). Ca and Pi content in femur, bone density and mineral content, and biomechanical parameters were similar in YE and C, while YR showed the significantly lowest value (p < 0.05). Conclusions: YE increased mineral Abs reaching the retention and bone quality of C. Although YR increased Abs, bone retention and quality did not achieve C values. Seemingly, YE compensated for the negative effect of the higher Pi supply and would be a good strategy to achieve adequate peak bone mass and bone quality, especially in lactose intolerant individuals. (AU)


Assuntos
Animais , Ratos , Oligossacarídeos/metabolismo , Osteogênese/fisiologia , Cálcio da Dieta/farmacocinética , Fósforo na Dieta/farmacocinética , Absorção Intestinal/fisiologia , Lactose/metabolismo , Magnésio/farmacocinética , Tíbia/anatomia & histologia , Iogurte/análise , Cálcio da Dieta/metabolismo , Absorciometria de Fóton , Densidade Óssea , Interpretação Estatística de Dados , Fósforo na Dieta/metabolismo , beta-Galactosidase/síntese química , Ratos Wistar , Lactobacillus delbrueckii/isolamento & purificação , Fêmur/anatomia & histologia , Intestino Grosso/anatomia & histologia , Magnésio/metabolismo , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA