Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 31(4): 375-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25716769

RESUMO

PURPOSE: The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C). MATERIALS AND METHODS: The nanocarriers were synthesised by coating mesoporous silica nanoparticles with a thin layer of polyacrylamide. The low gelation temperature of the protective shell provides preferred routes for drug diffusion when the nanocarriers are heated within the hyperthermia temperature range. In order to determine the gelation point of polyacrylamide shell, differential scanning calorimetry was used. Various chemical, morphological, thermal, as well as drug loading capacities of these nanocarriers were characterised and their drug release behaviour was examined using magnetic resonance -guided focused ultrasound (MRgFUS). RESULTS: Drug release measurements at different temperatures using doxorubicin showed 11.5 ± 2.4% leakage in aqueous solution at 37 °C after 30 min, while this value was significantly increased to 67.6 ± 2.5% at 60 °C. A 39.2 ± 2.2% release of doxorubicin was also obtained due to the sonication of drug-loaded nanoparticles for 5 × 20 s using MRgFUS. CONCLUSION: The nanocarriers developed do not exhibit a sharp transition temperature. However, a relatively high loading efficiency as well as rapid drug release at thermal ablation temperature range makes these nanostructures promising candidates for application as adjuvants to various thermal modalities such as radiofrequency and high intensity focused ultrasound.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Hipertermia Induzida/métodos , Nanopartículas/química , Resinas Acrílicas/farmacologia , Doxorrubicina/farmacologia , Géis , Espectroscopia de Ressonância Magnética
2.
Gels ; 8(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36286171

RESUMO

In recent years, intensive research has been carried out on the use of hydrogels obtained from natural polymers, mainly chitosan. These products are increasingly replacing solutions based on synthetic materials in medicine. This publication presents the results of studies on the sol-gel transition of chitosan solutions as the base material for the preparation of thermosensitive hydrogels for potential applications in tissue engineering. The measurements were carried out for systems consisting of chitosan lactate and chitosan chloride solutions using ß-glycerol phosphate disodium salt pentahydrate and uridine 5'-monophosphate disodium salt as the cross-linking agents. The sol-gel transition point of the solutions was determined based on the rheological measurements in the cone-plate configuration of the rotational rheometer and experiments performed using the method of nuclear magnetic resonance. The obtained results showed a significant influence of the cross-linking agent on the course of the sol-gel transition of chitosan salt solutions, and the systems that consisted of chitosan lactate seemed to be especially interesting for biomedical applications.

3.
ACS Appl Mater Interfaces ; 14(24): 27911-27921, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35670602

RESUMO

Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) thermoelectric thin films have attracted significant interest due to their solution-processable manufacturing. However, molecular-level tuning or doping is still a challenge to synergistically boost their thermoelectric performance and mechanically stretchable capabilities. In this work, we report a counterion exchange between ionic liquid bis(x-fluorosulfonyl) amide lithium (Li:nFSI, n = 1, 3, 5) with different sizes of anions and a PEDOT:PSS-induced bipolaron network, which significantly boosted the thermoelectric power factor from 0.8 to 157 µW m K-2 at 235 °C and the maximum tensile strain from 3% to over 30%. The π-π* stacking of the PEDOT polymer chains was fine-tuned by the hydrophobic anions of nFSI-, providing a technical route for constructing a bipolaron network and inducing the transition from hopping transport to band-like transport. Furthermore, we found that the stretchable capabilities, that is, εmax, were connected to the gelation time of the PEDOT:PSS-Li:nFSI aqueous solution. Thus, more fluorine-containing groups resulted in longer gelation times and higher εmax values, which significantly improved the processability of the solution-derived films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA