Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Dev Dyn ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096177

RESUMO

BACKGROUND: Early embryonic aortic arches (AA) are a dynamic vascular structures that are in the process of shaping into the great arteries of cardiovascular system. Previously, a time-lapsed mechanosensitive gene expression map was established for AA subject to altered mechanical loads in the avian embryo. To validate this map, we investigated effects on vascular microstructure and material properties following the perturbation of key genes using an in-house microvascular gene knockdown system. RESULTS: All siRNA vectors show a decrease in the expression intensity of desired genes with no significant differences between vectors. In TGFß3 knockdowns, we found a reduction in expression intensities of TGFß3 (≤76%) and its downstream targets such as ELN (≤99.6%), Fbn1 (≤60%), COL1 (≤52%) and COL3 (≤86%) and an increase of diameter in the left AA (23%). MMP2 knockdown also reduced expression levels in MMP2 (≤30%) and a 6-fold increase in its downstream target COL3 with a decrease in stiffness of the AA wall and an increase in the diameter of the AA (55%). These in vivo measurements were confirmed using immunohistochemistry, western blotting and a computational growth model of the vascular extracellular matrix (ECM). CONCLUSIONS: Localized spatial genetic modification of the aortic arch region governs the vascular phenotype and ECM composition of the embryo and can be integrated with mechanically-induced congenital heart disease models.

2.
RNA ; 28(8): 1074-1088, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618430

RESUMO

CRISPR-Cas systems are functionally diverse prokaryotic antiviral defense systems, which encompass six distinct types (I-VI) that each encode different effector Cas nucleases with distinct nucleic acid cleavage specificities. By harnessing the unique attributes of the various CRISPR-Cas systems, a range of innovative CRISPR-based DNA and RNA targeting tools and technologies have been developed. Here, we exploit the ability of type III-A CRISPR-Cas systems to carry out RNA-guided and sequence-specific target RNA cleavage for establishment of research tools for post-transcriptional control of gene expression. Type III-A systems from three bacterial species (L. lactis, S. epidermidis, and S. thermophilus) were each expressed on a single plasmid in E. coli, and the efficiency and specificity of gene knockdown was assessed by northern blot and transcriptomic analysis. We show that engineered type III-A modules can be programmed using tailored CRISPR RNAs to efficiently knock down gene expression of both coding and noncoding RNAs in vivo. Moreover, simultaneous degradation of multiple cellular mRNA transcripts can be directed by utilizing a CRISPR array expressing corresponding gene-targeting crRNAs. Our results demonstrate the utility of distinct type III-A modules to serve as specific and effective gene knockdown platforms in heterologous cells. This transcriptome engineering technology has the potential to be further refined and exploited for key applications including gene discovery and gene pathway analyses in additional prokaryotic and perhaps eukaryotic cells and organisms.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Técnicas de Silenciamento de Genes , RNA/genética , Staphylococcus epidermidis , Tecnologia
3.
BMC Vet Res ; 20(1): 344, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097704

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) induces a poor innate immune response following infection. This study evaluates the effects of transforming growth factor beta 1 (TGFß1) up-regulated by PRRSV on gene expressions of co-stimulatory molecules, type I interferon (IFN), type I IFN-regulated genes (IRGs), pattern recognition receptors, and pro-inflammatory cytokines in PRRSV-inoculated monocyte-derived macrophages (MDMs). Phosphorothioate-modified antisense oligodeoxynucleotides (AS ODNs) specific to various regions of porcine TGFß1 mRNA were synthesized, and those specific to the AUG region efficiently knockdown TGFß1 mRNA expression and protein translation. Transfection of TGFßAS ODNs in MDMs inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) significantly reduced TGFß1 mRNA expression and significantly increased mRNA expressions of CD80, CD86, IFNß, IRGs (i.e. IFN regulatory factor 3 (IRF3), IRF7, myxovirus resistance 1, osteopontin, and stimulator of IFN genes), Toll-like receptor 3, and tumor necrosis factor-alpha. Transfection of TGFßAS ODNs in MDMs inoculated with HP-PRRSV-2 also significantly increased mRNA expressions of IFNα, IFNγ, and 2'-5'-oligoadenylate synthetase 1. The quantity of PRRSV-2 RNA copy numbers was significantly reduced in MDMs transfected with TGFßAS ODNs as compared to untransfected MDMs. Recombinant porcine TGFß1 (rTGFß1) and recombinant porcine IFNα (rIFNα) sustained and reduced the yields of PRRSV-2 RNA copy numbers in PRRSV-2 inoculated MDMs, respectively. These findings demonstrate a strategy of PRRSV for innate immune suppression via an induction of TGFß expression. These findings also suggest TGFß as a potential parameter that future PRRSV vaccine and vaccine adjuvant candidates should take into consideration.


Assuntos
Citocinas , Interferon Tipo I , Macrófagos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos , Interferon Tipo I/metabolismo , Citocinas/genética , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Técnicas de Silenciamento de Genes , Imunidade Inata
4.
Curr Genomics ; 25(1): 2-11, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38544826

RESUMO

Objectives: This research aimed to study the expression of PRDX6 mRNA in hepatocellular carcinoma (HCC) and its effect on the prognosis of HCC. Moreover, the effect of PRDX6 gene knockdown on the proliferation, migration, and invasion of HepG2 cells mediated by lentivirus was also examined. This study offers a theoretical and experimental basis for further research on the mechanism of PRDX6 in liver cancer and new methods for clinical diagnosis and treatment. Methods: RNA sequence data of 369 HCC patients were screened through the TCGA database, and the expression and clinical characteristics of PRDX6 mRNA were analyzed based on high-throughput RNA sequencing data. HepG2 cells were divided into WT, sh-NC and sh-PRDX6 groups. Real-time PCR and Western blot were used to detect the expression levels of the PRDX6 gene and protein, respectively. CCK8 method was used to detect the proliferation activity of HepG2 cells, scratch healing test was used to detect the migration ability, Transwell chamber was used to detect the invasion ability, and Western blot was used to detect the expression levels of PI3K/Akt/mTOR signaling pathway and Notch signaling pathway-related proteins. Results: The expression of PRDX6 was significantly correlated with the gender, race, clinical stage, histological grade, and survival time of HCC patients (P < 0.05). Compared with that in WT and sh-NC groups, the expression level of PRDX6 protein in HCC patients was significantly lower (P < 0.01), the proliferation activity of HCC cells was significantly decreased (P < 0.05), and the migration and invasion ability was significantly decreased (P < 0.05) in the sh-PRDX6 group. The expression levels of PI3K, p-Akt, p-mTOR, Notch1, and Hes1 proteins in the sh-PRDX6 group were significantly lower than those in WT and sh-NC groups (P < 0.05). Conclusion: The expression of PRDX6 may be closely related to the prognosis of HCC. Lentivirus-mediated PRDX6 knockdown can inhibit the proliferation, migration and invasion of HCC cells, which may be related to its regulating the PI3K/Akt/mTOR and Notch1 signaling pathways. PRDX6 is expected to be a new target for the diagnosis and treatment of liver cancer.

5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627408

RESUMO

New strategies for cancer immunotherapy are needed since most solid tumors do not respond to current approaches. Here we used epithelial cell adhesion molecule EpCAM (a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells) aptamer-linked small-interfering RNA chimeras (AsiCs) to knock down genes selectively in EpCAM+ tumors with the goal of making cancers more visible to the immune system. Knockdown of genes that function in multiple steps of cancer immunity was evaluated in aggressive triple-negative and HER2+ orthotopic, metastatic, and genetically engineered mouse breast cancer models. Gene targets were chosen whose knockdown was predicted to promote tumor neoantigen expression (Upf2, Parp1, Apex1), phagocytosis, and antigen presentation (Cd47), reduce checkpoint inhibition (Cd274), or cause tumor cell death (Mcl1). Four of the six AsiC (Upf2, Parp1, Cd47, and Mcl1) potently inhibited tumor growth and boosted tumor-infiltrating immune cell functions. AsiC mixtures were more effective than individual AsiC and could synergize with anti-PD-1 checkpoint inhibition.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno CD47/genética , Molécula de Adesão da Célula Epitelial/genética , Neoplasias Mamárias Experimentais/terapia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas de Ligação a RNA/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antineoplásicos Imunológicos/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/imunologia , Aptâmeros de Nucleotídeos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Fagocitose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/imunologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/imunologia , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga Tumoral/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-38242349

RESUMO

We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.


Assuntos
Hormônios de Inseto , Rhodnius , Animais , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Ritmo Circadiano/fisiologia , Larva/metabolismo
7.
Pestic Biochem Physiol ; 203: 106013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084777

RESUMO

As an important class of detoxifying enzymes, glutathione S-transferases (GSTs) are pivotal in decreasing insecticide toxicity to insects. Periplaneta americana GSTd1 (PaGSTd1) has been verified as a key enzyme in detoxifying pyrethroid insecticides, but its detoxification capability against a broader spectrum of insecticides has never been investigated. It is revealed that PaGSTd1 expression showed a rapid and significant increase upon exposure to various insecticides (organophosphates, neonicotinoids, and fipronil). Subsequent in vitro metabolic assays indicated that organophosphates, particularly chlorpyrifos-methyl, can be effectively metabolized by PaGSTd1. Further knockdown of PaGSTd1 via RNA interference significantly heightened the susceptibility of P. americana to chlorpyrifos-methyl, underscoring the enzyme's key role in detoxifying chlorpyrifos-methyl. Additionally, this study confirmed that PaGSTd1 cannot mitigate insecticide toxicity through countering oxidative stress. Collectively, these findings elucidate the involvement of PaGSTd1 in the detoxification processes for organophosphates, offering a comprehensive insight into the metabolic mechanisms mediated by GSTs in P. americana. This research provides a foundational understanding for managing GSTs-mediated metabolic resistance in this species, which is crucial for effective pest control strategies.


Assuntos
Glutationa Transferase , Inseticidas , Periplaneta , Periplaneta/efeitos dos fármacos , Periplaneta/metabolismo , Animais , Inseticidas/toxicidade , Inseticidas/farmacologia , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Organofosfatos/toxicidade , Organofosfatos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Inativação Metabólica , Clorpirifos/toxicidade , Clorpirifos/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos
8.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396757

RESUMO

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Assuntos
Glioblastoma , Transportador de Glucose Tipo 3 , Humanos , Biomarcadores/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Hipóxia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000202

RESUMO

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Assuntos
Cisplatino , Células Ciliadas Auditivas , Microbolhas , Muramidase , NADPH Oxidase 4 , Ototoxicidade , Espécies Reativas de Oxigênio , Cisplatino/farmacologia , Animais , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Camundongos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/genética , Muramidase/genética , RNA Interferente Pequeno/genética , Ondas Ultrassônicas , Técnicas de Silenciamento de Genes , Linhagem Celular
10.
Angew Chem Int Ed Engl ; 63(17): e202318773, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38411401

RESUMO

Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.


Assuntos
Oligonucleotídeos , Peixe-Zebra , Animais , Morfolinos/genética , Morfolinos/farmacologia , Oligonucleotídeos Antissenso , Fenótipo , Mamíferos
11.
Antimicrob Agents Chemother ; 67(2): e0082122, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36625569

RESUMO

Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.


Assuntos
Antimaláricos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina-Proteína Ligases , Humanos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Biochem Biophys Res Commun ; 682: 156-162, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37812860

RESUMO

RPL27 is linked to the development of various diseases including malignant tumors. RPL27 may play an oncogenic function in hepatocellular carcinoma (HCC), but this is unknown. So, the aim of this study was to investigate how the human liver cancer cell lines SNU449 and HepG2 responded to RPL27 knockdown in terms of proliferation and apoptosis. SNU449 and HepG2 were cultured and infected with shCon and shRPL27 lentiviral particles to induce RPL27 knockdown, and then RPL27 expression was detected using qPCR and Western blot. Cell proliferation was measured using CCK8, cell cloning, cell scraping, and transwell migration and invasion, while apoptosis was measured using flow cytometry (FCM). The qPCR revealed that mRNA expression of RPL27 decreased after knocking down RPL27 in cells. The CCK8 and cell cloning assay confirmed that knocking down RPL27 significantly reduced cell viability. The cell scratch assay and transwell assays showed that the proliferation rate decreased after knocking down RPL27. A substantial increase in apoptotic cells was discovered by FCM. According to WB, RPL27 knockdown increased the expression of Bax and Caspase-3 while decreasing the expression of bcl-2. The findings showed that RPL27 knockdown inhibited cell proliferation in SNU449 and HepG2 via inducing apoptosis, proving that RPL27 is a novel gene linked with HCC and is crucial for both proliferation and apoptosis. These outcomes imply that RPL27 may be a potential target for liver cancer diagnosis and therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Neoplasias Hepáticas/patologia
13.
Proc Biol Sci ; 290(1990): 20221942, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36598016

RESUMO

Caste-based reproductive division of labour in social insects is built on asymmetries in resource allocation within colonies. Kings and queens dominantly consume limited resources for reproduction, while non-reproductive castes such as workers and soldiers help reproductive castes. Studying the regulation of such asymmetries in resource allocation is crucial for understanding the maintenance of sociality in insects, although the molecular background is poorly understood. We focused on uric acid, which is reserved and used as a valuable nitrogen source in wood-eating termites. We found that king- and queen-specific degradation of uric acid contributes to reproduction in the subterranean termite Reticulitermes speratus. The urate oxidase gene (RsUAOX), which catalyses the first step of nitrogen recycling from stored uric acid, was highly expressed in mature kings and queens, and upregulated with differentiation into neotenic kings/queens. Suppression of uric acid degradation decreased the number of eggs laid per queen. Uric acid was shown to be provided by workers to reproductive castes. Our results suggest that the capacity to use nitrogen, which is essential for the protein synthesis required for reproduction, maintains colony cohesion expressed as the reproductive monopoly held by kings and queens.


Assuntos
Isópteros , Animais , Isópteros/fisiologia , Ácido Úrico/metabolismo , Reprodução/fisiologia , Comportamento Social
14.
Insect Mol Biol ; 32(6): 648-657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334906

RESUMO

Chikungunya virus (CHIKV) is an alphavirus that has re-emerged globally over the last two decades and has the potential to become endemic in the United States due to the presence of competent mosquito vectors, Aedes aegypti and Aedes albopictus. CHIK disease is characterised by fever, rash, and joint pain, and causes chronic debilitating joint pain and swelling in >50% of infected individuals. Given the disease severity caused by CHIKV and the global presence of vectors to facilitate its spread, strategies to reduce viral transmission are desperately needed; however, the human biological factors driving CHIKV transmission are poorly understood. Towards that end, we have previously shown that mosquitoes fed on alphavirus-infected obese mice have reduced infection and transmission rates compared to those fed on infected lean mice despite similar viremia in lean and obese mice. One of the many host factors that increase in obese hosts is insulin, which was previously shown to impact the infection of mosquitoes by several flaviviruses. However, insulin's impact on alphavirus infection of live mosquitoes is unknown and whether insulin influences mosquito-borne virus transmission has not been tested. To test this, we exposed A. aegypti mosquitoes to bloodmeals with CHIKV in the presence or absence of physiologically relevant levels of insulin and found that insulin significantly lowered both infection and transmission rates. RNA sequencing analysis on mosquito midguts isolated at 1-day-post-infectious-bloodmeal (dpbm) showed enrichment in genes in the Toll immune pathway in the presence of insulin, which was validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We then sought to determine if the Toll pathway plays a role in CHIKV infection of Ae. aegypti mosquitoes; therefore, we knocked down Myd88, a critical immune adaptor molecule for the Toll pathway, in live mosquitoes, and found increased CHIKV infection compared to the mock knockdown control group. Overall, these data demonstrate that insulin reduces CHIKV transmission by Ae. aegypti and activates the Toll pathway in mosquitoes, suggesting that conditions resulting in higher serum insulin concentrations may reduce alphavirus transmission. Finally, these studies suggest that strategies to activate insulin or Toll signalling in mosquitoes may be an effective control strategy against medically relevant alphaviruses.


Assuntos
Aedes , Vírus Chikungunya , Animais , Humanos , Camundongos , Vírus Chikungunya/genética , Aedes/fisiologia , Insulina , Camundongos Obesos , Artralgia
15.
Fish Shellfish Immunol ; 139: 108884, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302677

RESUMO

Shrimp immunology is vital in establishing prophylactic and therapeutic strategies for controlling pathological problems that threaten shrimp production. Apart from dietary treatments, the adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulatory enzyme that restores cellular energy balance during metabolic and physiological stress, is known to have therapeutic potential to improve shrimp's defense mechanism. Despite this, studies targeting the AMPK pathway in shrimp exposed to stressful conditions are vastly limited. In this study, AMPK was knocked down to assess the immunological changes and white shrimp, Penaeus vannamei resistance to Vibrio alginolyticus infection. Shrimps were injected individually and simultaneously with dsRNA targeting specific genes such as AMPK, Rheb, and TOR, after which the hepatopancreas was analyzed for the different gene expressions. The gene expressions of AMPK, Rheb, and TOR were effectively suppressed after being treated with dsRNAs. The Western blot analysis further confirmed a reduction in the protein concentration of AMPK and Rheb in the hepatopancreas. The suppression of AMPK gene led to a robust increase in the shrimp's resistance to V. alginolyticus, whereas the activation of AMPK by metformin decreased the shrimp's disease resistance. Among the mTOR downstream targets, the HIF-1α expression in shrimp treated with dsAMPK significantly increased at 48 h but returned to normal levels when shrimp were treated with dsAMPK and either dsRheb or dsTOR. Immune responses such as respiratory burst, lysozyme activity, and phagocytic activity increased, while superoxide dismutase activity decreased following the knockdown of the AMPK gene compared to the control group. However, co-injection with dsAMPK and dsTOR or dsRheb restored immune responses to normal levels. Collectively, these results demonstrate that the inactivation of AMPK may ameliorate shrimp's innate immune response to recognize and defend against pathogens via the AMPK/mTOR1 pathway.


Assuntos
Penaeidae , Vibrioses , Animais , Vibrio alginolyticus/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Imunidade Inata/genética , Adenosina
16.
J Nanobiotechnology ; 21(1): 273, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592297

RESUMO

BACKGROUND: Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS: Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS: We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.


Assuntos
Anticorpos , Dano ao DNA , Animais , Camundongos , Membrana Celular , Sobrevivência Celular , Inativação Gênica
17.
Gen Comp Endocrinol ; 332: 114184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455643

RESUMO

Prothoracicotropic hormone (PTTH) is a central regulator of insect development that regulates the production of the steroid moulting hormones (ecdysteroids) from the prothoracic glands (PGs). Rhodnius PTTH was the first brain neurohormone discovered in any animal almost 100 years ago but has eluded identification and no homologue of Bombyx mori PTTH occurs in its genome. Here, we report Rhodnius PTTH is the first noggin-like PTTH found. It differs in important respects from known PTTHs and is the first PTTH from the Hemimetabola (Exopterygota) to be fully analysed. Recorded PTTHs are widespread in Holometabola but close to absent in hemimetabolous orders. We concluded Rhodnius PTTH likely differed substantially from the known ones. We identified one Rhodnius gene that coded a noggin-like protein (as defined by Molina et al., 2009) that had extensive similarities with known PTTHs but also had two additional cysteines. Sequence and structural analysis showed known PTTHs are closely related to noggin-like proteins, as both possess a growth factor cystine knot preceded by a potential cleavage site. The gene is significantly expressed only in the brain, in a few cells of the dorsal protocerebrum. We vector-expressed the sequence from the potential cleavage site to the C-terminus. This protein was strongly steroidogenic on PGs in vitro. An antiserum to the protein removed the steroidogenic protein released by the brain. RNAi performed on brains in vitro showed profound suppression of transcription of the gene and of production and release of PTTH and thus of ecdysteroid production by PGs. In vivo, the gene is expressed throughout development, in close synchrony with PTTH release, ecdysteroid production by PGs and the ecdysteroid titre. The Rhodnius PTTH monomer is 17kDa and immunoreactive to anti-PTTH of Bombyx mori (a holometabolan). Bombyx PTTH also mildly stimulated Rhodnius PGs. The two additional cysteines form a disulfide at the tip of finger 2, causing a loop of residues to protrude from the finger. A PTTH variant without this loop failed to stimulate PGs, showing the loop is essential for PTTH activity. It is considered that PTTHs of Holometabola evolved from a noggin-like protein in the ancestor of Holometabola and Hemiptera, c.400ma, explaining the absence of holometabolous-type PTTHs from hemimetabolous orders and the differences of Rhodnius PTTH from them. Noggin-like proteins studied from Hemiptera to Arachnida were homologous with Rhodnius PTTH and may be common as PTTHs or other hormones in lower insects.


Assuntos
Bombyx , Hormônios de Inseto , Rhodnius , Animais , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Ritmo Circadiano/fisiologia , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Larva/metabolismo
18.
Exp Parasitol ; 248: 108504, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914063

RESUMO

Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and is responsible for ∼250 million human cases per year. Due to the extensive use of praziquantel for the treatment of parasitic diseases, drug resistance has been reported. Consequently, novel drugs and effective vaccines are urgently needed for sustained control of schistosomiasis. Targeting reproductive development of Schistosoma japonicum could contribute to the control of schistosomiasis. In this study, five highly expressed proteins (S. japonicum large subunit ribosomal protein L7e, S. japonicum glutathione S-transferase class-mu 26 kDa isozyme, S. japonicum UDP-galactose-4-epimerase and two hypothetical proteins SjCAX70849 and SjCAX72486) in 18, 21, 23, and 25-day mature female worms compared to single-sex infected female worms were selected based on our previous proteomic analysis. Quantitative real-time polymerase chain reaction analysis and long-term interference with small interfering RNA were performed to identify the biological functions of these five proteins. The transcriptional profiles suggested that all five proteins participated in the maturation of S. japonicum. RNA interference against these proteins resulted in morphological changes to S. japonicum. The results of an immunoprotection assay revealed that immunization of mice with recombinant SjUL-30 and SjCAX72486 upregulated production of immunoglobulin G-specific antibodies. Collectively, the results demonstrated that these five differentially expressed proteins were vital to reproduction of S. japonicum and, thus, are potential candidate antigens for immune protection against schistosomiasis.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Minorias Sexuais e de Gênero , Feminino , Humanos , Animais , Camundongos , Proteômica , Praziquantel/farmacologia
19.
Tohoku J Exp Med ; 260(1): 51-61, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36823185

RESUMO

Type VI CRISPR-Cas13 is the only CRISPR system that can bind and cleave RNA without DNase activity. We used the newly discovered, smaller Cas13X.1 protein to construct an editing system in mammalian cells, aiming to break the delivery restrictions of CRISPR-Cas13 system in vivo and promote the application of Cas13X system in clinical therapy. We employed exogenous fluorescence reporter gene mCherry and endogenous gene transketolase (TKT) closely related to cancer cell metabolism as target genes to evaluate the Cas13X.1 system. The recombinant plasmids targeting exogenous gene mCherry and endogenous gene TKT were constructed based on Cas13X.1 backbone plasmid. The editing efficiency, protein expression level, downstream gene transcript level and safety of Cas13X.1 system were evaluated. Both TKT transcripts of endogenous genes and mCherry transcripts of exogenous genes were significantly degraded by Cas13X.1 system with a knockdown efficiency up to 50%. At the same time, Cas13X.1 down-regulated the expression of the corresponding protein level in the editing of transcripts. In addition, the transcripts of key metabolic enzymes related to TKT were also down-regulated synchronously, suggesting that the degradation of TKT transcripts by Cas13X.1 system affected the main metabolic pathways related to TKT. The morphology, RNA integrity and apoptosis of cells loaded with Cas13X.1 system were not affected. The Cas13X.1 system we constructed had strong RNA knockdown ability in mammalian cells with low cellular toxicity. Compared with other CRISPR-Cas13 systems, Cas13X.1 system with smaller molecular weight has more advantages in vivo delivery. The Cas13X.1 system targeting TKT transcripts also provides an alternative method for the study of anti-cancer therapy.


Assuntos
Edição de Genes , Neoplasias , Animais , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Edição de RNA , RNA/genética , Mamíferos/genética
20.
J Basic Microbiol ; 63(10): 1095-1105, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309240

RESUMO

The 3,4-dihydroxyphenylalanine (DOPA) melanin is one of the important virulence factors for Cryptococcus neoformans, which may trigger immune responses in the host. While the production of DOPA melanin is catalyzed by laccase that is predominantly encoded by LAC1 gene. Therefore, regulating the genetic expression of C. neoformans is conducive to exploring the impact of interested molecules on the host. In this work, we established two systems that were constructed quickly and easily for the knock-down/knock-out of LAC1 gene: RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats CRISPR-Cas9. The RNAi system was constructed by pSilencer 4.1-CMV neo plasmid and short hairpin RNA to achieve effective transcriptional suppression. The CRISPR-Cas9 system was used the PNK003 vectors to obtain a stable albino mutant strain. The results of phenotype, quantitative real-time polymerase chain reaction, transmission electron microscope, and spectrophotometry were used to assess the ability of melanin production. As a result, the RNAi system displayed attenuation of transcriptional suppression when the transformants continuously passed on new plates. However, the transcriptional suppression of long loop in short hairpin RNA was more powerful and lasted longer. An albino strain produced by CRISPR-Cas9 was completely unable to synthesize melanin. In conclusion, strains with different capacities of melanin production were obtained by RNAi and CRISPR-Cas9 systems, which might be useful for exploring the linear relation between melanin and immunoreaction of the host. In addition, the two systems in this article might be convenient to quickly screen the possible trait-regulating genes of other serotypes of C. neoformans.


Assuntos
Cryptococcus neoformans , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Interferência de RNA , Sistemas CRISPR-Cas , Melaninas , Di-Hidroxifenilalanina , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA