Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.647
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(10): e2117416119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238642

RESUMO

SignificanceOver the years, many unusual chemical phenomena have been discovered at high pressures, yet our understanding of them is still very fragmentary. Our paper addresses this from the fundamental level by exploring the key chemical properties of atoms-electronegativity and chemical hardness-as a function of pressure. We have made an appropriate modification to the definition of Mulliken electronegativity to extend its applicability to high pressures. The change in atomic properties, which we observe, allows us to provide a unified framework explaining (and predicting) many chemical phenomena and the altered behavior of many elements under pressure.

2.
Nano Lett ; 24(26): 8126-8133, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904329

RESUMO

While lead sulfide shows notable thermoelectric properties, its production costs remain high, and its mechanical hardness is low, which constrains its commercial viability. Herein, we demonstrate a straightforward and cost-effective method to produce PbS nanocrystals at ambient temperature. By introducing controlled amounts of silver, we achieve p-type conductivity and fine-tune the energy band structure and lattice configuration. Computational results show that silver shifts the Fermi level into the valence band, facilitating band convergence and thereby enhancing the power factor. Besides, excess silver is present as silver sulfide, which effectively diminishes the interface barrier and enhances the Seebeck coefficient. Defects caused by doping, along with dislocations and interfaces, reduce thermal conductivity to 0.49 W m-1 K-1 at 690 K. Moreover, the alterations in crystal structure and chemical composition enhance the PbS mechanical properties. Overall, optimized materials show thermoelectric figures of merit approximately 10-fold higher than that of pristine PbS, alongside an average hardness of 1.08 GPa.

3.
Nano Lett ; 24(3): 905-913, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197790

RESUMO

Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.

4.
Ann Surg Oncol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743283

RESUMO

BACKGROUND AND OBJECTIVES: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone. OBJECTIVE: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination. METHODS: Local adjuvants were applied to porcine specimens under defined conditions. To assess changes in bone mineral density (BMD), a micro-CT scan was used. The pixel gray values of the volume of interest (VOI) were evaluated per specimen and converted to BMD values. The Vickers hardness test was employed to assess bone hardness (HV). The depth of necrosis was measured histologically using hematoxylin and eosin-stained tissue sections. RESULTS: A noticeable change in BMD was observed on the argon beam coagulation (ABC) sample. Comparable hardness values were measured on samples following electrocautery and ABC, and lowering of bone hardness was obtained in the case of liquid nitrogen. Extensive induced depth of necrosis was registered in the specimen treated with liquid nitrogen. CONCLUSION: This study determined the effect of local adjuvants on cortical bone by using micro-CT along with histological and mechanical examination. Phenolization and liquid nitrogen application caused a decrease in bone hardness. The bone density was affected in the range of single-digit percentage values. Liquid nitrogen induced extensive depth of necrosis with a wide variance of values.

5.
Chemphyschem ; 25(1): e202300647, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37840017

RESUMO

The hardness of metal-organic frameworks (MOFs) is an important mechanical property metric measuring their resistance to the permanent plastic deformation. The hardness of most MOFs measured from nanoindentation experiments usually exhibits the similar unique indentation depth dependence feature, the mechanism of which still remains unclear. In order to explain the effect of the indentation depth on the hardness of MOFs, we conducted nanoindentation simulations on HKUST-1 by using reactive molecular dynamics simulations. Our simulations reveal that the HKUST-1 material near the indenter can transform from the parent crystalline phase to a new amorphous phase due to the high pressure generated, while its counterpart far from the indenter remains in the crystalline phase. By considering the crystalline-amorphous interface in the energy analysis of MOFs, we derived an analytical expression of the hardness at different indentation depths. It is found that the interface effect can greatly increase the hardness of MOFs, as observed in nanoindentation simulations. Moreover, the proposed analytical expression can well explain the indentation depth-dependent hardness of many MOF crystals measured in nanoindentation experiments. Overall, this work can provide a better understanding of the indentation depth dependence of the hardness of MOFs.

6.
Support Care Cancer ; 32(5): 295, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635051

RESUMO

OBJECTIVE: The aim of this in vitro study was to evaluate the effect of radiotherapy on the surface microhardness and roughness of different bioactive restorative materials. MATERIALS AND METHODS: A total of 60-disc specimens (5 mm × 2 mm) were performed in four groups (n = 15 each) from Equia Forte HT, Cention N, Activa Bioactive Restorative, and Beautifil II. Following the polishing procedure (600, 1000, 1200 grit silicon carbide papers), all specimens were irradiated at 2 Gy per fraction, five times a week for a total dose of 70 Gy in 30 fractions over 7 weeks. Before and after the irradiation, the specimens were analyzed regarding the surface roughness and microhardness. Surface morphology was also analyzed by scanning electron microscopy. Kruskal-Wallis test, Wilcoxon test, and paired sample t-test were used for statistical analysis. RESULTS: Significant differences were found after radiation with increased mean roughness of both Cention N (p = 0.001) and Beautifil II (p < 0.001) groups. In terms of microhardness, only the Beautifil II group showed significant differences with decreased values after radiation. There were statistically significant differences among the groups' roughness and microhardness data before and after radiotherapy (p < 0.05). CONCLUSION: The effect of radiotherapy might differ according to the type of the restorative material. Although results may differ for other tested materials, giomer tends to exhibit worse behaviour in terms of both surface roughness and microhardness. CLINICAL RELEVANCE: In patients undergoing head and neck radiotherapy, it should be taken into consideration that the treatment process may also have negative effects on the surface properties of anti-caries restorative materials.


Assuntos
Cárie Dentária , Radioterapia (Especialidade) , Humanos , Cariostáticos , Pescoço , Projetos de Pesquisa
7.
Environ Res ; 245: 117988, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145734

RESUMO

Hardness, iron, and manganese are common groundwater pollutants, that frequently surpass the established discharge standard concentrations. They can be effectively removed, however, through induced crystallization. This study has investigated the effectiveness of the simultaneous removal of hardness-iron-manganese and the crystallization kinetics of calcium carbonate during co-crystallization using an automatic potentiometric titrator. The impacts pH, dissolved oxygen (DO), and ion concentration on the removal efficiency of iron and manganese and their influence on calcium carbonate induced crystallization were assessed. The results suggest that pH exerts the most significant influence during the removal of hardness, iron, and manganese, followed by DO, and then the concentration of iron and manganese ions. The rate of calcium carbonate crystallization increased with pH, stabilizing at a maximum of 10-10 m/s. Iron and manganese can be reduced from an initial level of 4 mg/L to <0.3 mg/L and 0.1 mg/L, respectively. The removal rate of iron, however, was notably higher than that of manganese. The DO concentration correlates positively with the removal of iron and manganese but has minimal impact on the calcium carbonate crystallization process. During the removal of iron and manganese, competitive interactions occur with the substrate, as increases in the concentration of one ion will inhibit the removal rate of the other. Characterization of post-reaction particles and mechanistic analysis reveals that calcium is removed through the crystallization of CaCO3, while most iron is removed through precipitation as Fe2O3 and FeOOH. Manganese is removed via two mechanisms, crystallization of manganese oxide (MnO2/Mn2O3) and precipitation. Overall, this research studies the removal efficiency of coexisting ions, the crystallization rate of calcium carbonate, and the mechanism of simultaneous removal, and provides valuable data to aid in the development of new removal techniques for coexisting ions.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Manganês/química , Compostos de Manganês/química , Ferro/química , Óxidos/química , Cristalização , Dureza , Carbonato de Cálcio/química , Água Subterrânea/química , Purificação da Água/métodos
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301887

RESUMO

The origin of the indentation size effect has been extensively researched over the last three decades, following the establishment of nanoindentation as a broadly used small-scale mechanical testing technique that enables hardness measurements at submicrometer scales. However, a mechanistic understanding of the indentation size effect based on direct experimental observations at the dislocation level remains limited due to difficulties in observing and quantifying the dislocation structures that form underneath indents using conventional microscopy techniques. Here, we employ precession electron beam diffraction microscopy to "look beneath the surface," revealing the dislocation characteristics (e.g., distribution and total length) as a function of indentation depth for a single crystal of nickel. At smaller depths, individual dislocation lines can be resolved, and the dislocation distribution is quite diffuse. The indentation size effect deviates from the Nix-Gao model and is controlled by dislocation source starvation, as the dislocations are very mobile and glide away from the indented zone, leaving behind a relatively low dislocation density in the plastically deformed volume. At larger depths, dislocations become highly entangled and self-arrange to form subgrain boundaries. In this depth range, the Nix-Gao model provides a rational description because the entanglements and subgrain boundaries effectively confine dislocation movement to a small hemispherical volume beneath the contact impression, leading to dislocation interaction hardening. The work highlights the critical role of dislocation structural development in the small-scale mechanistic transition in indentation size effect and its importance in understanding the plastic deformation of materials at the submicron scale.

9.
J Dairy Sci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608955

RESUMO

The meltdown test is an efficient tool widely and commonly used to characterize structural changes in frozen desserts resulting from different ingredients and processing conditions. The meltdown is commonly determined by a gravimetric test, and it is used to obtain the onset (Mon), rate (Mrate), and maximum (MMax) meltdown. However, these parameters are calculated ambiguously due to the inconsistency in the methodology. This work aims at modeling the meltdown curves (weight vs time) of different commercial samples (36 commercial samples). Samples of commercial frozen desserts (40-60 g) was placed on a 304 stainless wire cloth (1.50 mm opening size and 52% open area) suspended about 15 cm above of an analytical balance, and the dripped portion of the melted ice cream was continuously recorded throughout the duration of the test. The meltdown test was conducted at room temperature. Each meltdown test generated more between 3000 to 4000 data points and was modeled using 4 equations: The logistic model, the Gompertz model, the Richard model, and the Hill model. All the meltdown curves were sigmoidal in shape, regardless of the type of frozen dessert. The experimental meltdown curves were adequately represented by the Logistic model, judging by several criteria (R2 = 0.999, adjusted RAdj2 = 0.999, Akaike probability = 6582, and F-value = 1.88 × 106). Thus, the Logistic model was shown to be an effective tool for predicting the meltdown curves of frozen desserts, and it can be used to define unambiguously the onset, rate, and maximum meltdown. Moreover, a dimensionless response (meltdown behavior, MBe) that combines Mon, Mrate, and MMax was developed and used for mapping the meltdown of different commercial frozen desserts.

10.
BMC Med Inform Decis Mak ; 24(1): 88, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539201

RESUMO

BACKGROUND: The pharmaceutical industry is continually striving to innovate drug development and formulation processes. Orally disintegrating tablets (ODTs) have gained popularity due to their quick release and patient-friendly characteristics. The choice of excipients in tablet formulations plays a critical role in ensuring product quality, highlighting its importance in tablet creation. The traditional trial-and-error approach to this process is both expensive and time-intensive. To tackle these obstacles, we introduce a fresh approach leveraging machine learning and deep learning methods to automate and enhance pre-formulation drug design. METHODS: We collected a comprehensive dataset of 1983 formulations, including excipient names, quantities, active ingredient details, and various physicochemical attributes. Our study focused on predicting two critical control test parameters: tablet disintegration time and hardness. We compared a range of models like deep learning, artificial neural networks, support vector machines, decision trees, multiple linear regression, and random forests. RESULTS: A 12-layer deep neural network, as a form of deep learning, surpassed alternative techniques by achieving 73% accuracy for disintegration time and 99% for tablet hardness. This success underscores its efficacy in predicting complex pharmaceutical factors. Such an approach streamlines the drug formulation process, reducing iterations and material consumption. CONCLUSIONS: Our findings highlight the deep learning potential in pharmaceutical formulations, particularly for tablet hardness prediction. Future work should focus on enlarging the dataset to improve model effectiveness and extend its application in pharmaceutical product development and assessment.


Assuntos
Inteligência Artificial , Excipientes , Humanos , Solubilidade , Dureza , Comprimidos
11.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38894360

RESUMO

Maintaining high-quality welded connections is crucial in many industries. One of the challenges is assessing the mechanical properties of a joint during its production phase. Currently, in industrial practice, this occurs through NDT (non-destructive testing) conducted after the production process. This article proposes the use of a virtual sensor, which, based on temperature distributions observed on the joint surface during the welding process, allows for the determination of hardness distribution across the cross-section of a joint. Welding trials were conducted with temperature recording, hardness measurements were taken, and then, neural networks with different hyperparameters were tested and evaluated. As a basis for developing a virtual sensor, LSTM networks were utilized, which can be applied to time series prediction, as in the analyzed case of hardness value sequences across the cross-section of a welded joint. Through the analysis of the obtained results, it was determined that the developed virtual sensor can be applied to predict global temperature changes in the weld area, in terms of both its value and geometry changes, with the mean average error being less than 20 HV (mean for model ~35 HV). However, in its current form, predicting local hardness disturbances resulting from process instabilities and defects is not feasible.

12.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610263

RESUMO

The correlation between magnetic Barkhausen noise (MBN) features and the surface hardness of two types of die steels (Cr12MoV steel and S136 steel in Chinese standards) was investigated in this study. Back-propagation neural network (BP-NN) models were established with MBN magnetic features extracted by different methods as the input nodes to realize the quantitative prediction of surface hardness. The accuracy of the BP-NN model largely depended on the quality of the input features. In the extraction process of magnetic features, simplifying parameter settings and reducing manual intervention could significantly improve the stability of magnetic features. In this study, we proposed a method similar to the magnetic Barkhausen noise hysteresis loop (MBNHL) and extracted features. Compared with traditional MBN feature extraction methods, this method simplifies the steps of parameter setting in the feature extraction process and improves the stability of the features. Finally, a BP-NN model of surface hardness was established and compared with the traditional MBN feature extraction methods. The proposed MBNHL method achieved the advantages of simple parameter setting, less manual intervention, and stability of the extracted parameters at the cost of small accuracy reduction.

13.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257632

RESUMO

Shore hardness (SH) is a cost-effective and easy-to-use method to assess soft tissue biomechanics. Its use for the plantar soft tissue could enhance the clinical management of conditions such as diabetic foot complications, but its validity and reliability remain unclear. Twenty healthy adults were recruited for this study. Validity and reliability were assessed across six different plantar sites. The validity was assessed against shear wave (SW) elastography (the gold standard). SH was measured by two examiners to assess inter-rater reliability. Testing was repeated following a test/retest study design to assess intra-rater reliability. SH was significantly correlated with SW speed measured in the skin or in the microchamber layer of the first metatarsal head (MetHead), third MetHead and rearfoot. Intraclass correlation coefficients and Bland-Altman plots of limits of agreement indicated satisfactory levels of reliability for these sites. No significant correlation between SH and SW elastography was found for the hallux, 5th MetHead or midfoot. Reliability for these sites was also compromised. SH is a valid and reliable measurement for plantar soft tissue biomechanics in the first MetHead, the third MetHead and the rearfoot. Our results do not support the use of SH for the hallux, 5th MetHead or midfoot.


Assuntos
Ossos do Metatarso , Adulto , Humanos , Fenômenos Biomecânicos , Dureza , Reprodutibilidade dos Testes , Pé/diagnóstico por imagem
14.
Nano Lett ; 23(20): 9319-9325, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37787654

RESUMO

High electrical conductivity and super high hardness are two sought-after material properties, but both are contradictory because the effective suppression of dislocation movement generally increases the scattering of conducting electrons. Here we synthesized a high-entropy dodecaboride composite (HEDC) with a large number of atomic-scale interlocking layers. It shows a Vickers hardness of 51.2 ± 3.6 GPa under an applied load of 0.49 N and an electrical resistivity of 44.5 µΩ·cm at room temperature. Such HEDC achieves superhardness by inheriting the high intrinsic hardness of its constituent phases and restricting the dislocation motion to further enhance the extrinsic hardness through forming numerous atom-scale interlocks between different slip systems. Moreover, the HEDC maintains the excellent electrical conductivity of the constituent borides, and the competition between two correlating structures produces the special kind of coherent boundary that minimizes the scattering of conducting electrons and does not largely deteriorate the electrical conductivity.

15.
Odontology ; 112(2): 479-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37938400

RESUMO

This in vitro study assessed peak temperature and temperature increase (ΔT) within the pulp chamber during different extended photoactivation techniques (EPT-applying similar radiant exposure values) to resin-based composites (RBCs) placed in a Class I cavity preparation in an extracted human lower third molar. A T-type thermocouple was placed in the pulp chamber and connected to a temperature analysis device (Thermes, Physitemp). The tooth was attached to an assembly simulating the in vivo environment (controlled baseline pulp chamber temperature and fluid flow). The real-time pulp chamber temperature was evaluated throughout the photoactivation (Bluephase N, Ivoclar Vivadent) of two bulk-fill RBCs: Tetric N Ceram Bulk Fill (TBF; shade: IVA; Ivoclar Vivadent); Surefill SDR flow + (SDR, shade: Universal; Dentsply Sirona), which were exposed to different curing techniques: 40 s-occlusal surface; 20 s-occlusal + 10 s-buccal + 10 s-lingual surfaces; 10 s-buccal + 10 s + lingual + 20 s-occlusal surfaces. Each EPT delivered 42.4 J/cm2. Vickers hardness (VHN) was measured on the removed, sectioned RBC restorations at the top and bottom middle areas after curing. ΔT and VHN data were analyzed using 2-way ANOVA followed by Bonferroni post-hoc test (α = 0.05). Peak temperature data were analyzed using one-way ANOVA and Dunnett's post-hoc test (α = 0.05). SDR showed higher ΔT values than TBF (p = 0.008) in some EPTs. Neither technique resulted in ΔT values greater than 5.5 °C. Both composites had acceptable bottom/top hardness ratios (greater than 80%), regardless of the photoactivation technique. The evaluated EPTs may be considered safe as a low-temperature increase was noticed within the pulp chamber.


Assuntos
Resinas Compostas , Materiais Dentários , Humanos , Temperatura , Resinas Acrílicas , Poliuretanos , Teste de Materiais , Polimerização , Lâmpadas de Polimerização Dentária
16.
Odontology ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809453

RESUMO

This study evaluated the effect of different post-curing cycles on the Vickers hardness, color change, and translucency value of 3D printed methacrylic acid ester-based temporary and permanent crown resins. A total of 300 samples were printed in disk shape (ø:8 mm, thickness: 2 mm) using VarseoSmile Crown Plus (VSC) and VarseoSmile Temp (VST) materials from a 3D printer. These disks were divided into five subgroups (n = 30 each) based on flash-curing cycles (0, 750, 1500, 2250, and 3000). Surface hardness tests and color tests were conducted on both the green state and flash-cured groups. The data were analyzed using univariate analysis of variance (ANOVA). The hardness of 3D printed temporary and permanent crown resin increased with post-curing time. Compared to the post-curing cycle recommended by the manufacturer, no clinically significant color change (ΔE00 ≥ 2.25) was observed in any of the polymerized groups. It was determined that permanent crown material had a more translucent structure than temporary crown material. The interaction between material and post-curing had significant effects on surface hardness, color (ΔE00), and translucency of 3D printed methacrylic acid ester-based resins.

17.
J Esthet Restor Dent ; 36(1): 220-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008797

RESUMO

OBJECTIVES: To compare the filler weight percentage (wt%), filler and resin composition, flexural strength, modulus, and hardness of several 3D-printed resins to direct and indirect restorative materials. MATERIALS AND METHODS: Four 3D-printed resins (C&B MFH, Ceramic Crown, OnX, and OnX Tough), one milled resin composite (Lava Ultimate), one conventional composite (Filtek Supreme), and one ceramic (IPS e.max CAD) were evaluated. Filler wt% was determined by the burned ash technique, and filler particle morphology and composition were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively. Organic resin composition was analyzed by Fourier transform infrared spectroscopy. Three-point bend flexural strength and modulus of the materials were determined by ISO 4049 or ISO 6872. Vickers microhardness was measured. Data were compared with a one-way analysis of variance (ANOVA) and Tukey post hoc analysis. Linear regression analysis was performed for filler wt% versus flexural strength, modulus, and hardness. RESULTS: 3D-printed resins were composed of various sized and shaped silica fillers and various types of methacrylate resins. Significant differences were found among filler wt% with some materials around 3% (C&B MFH), others between 33% and 38% (OnX Tough and OnX), others around 50% (Ceramic Crown), and some around 72% (Filtek Supreme and Lava Ultimate). All 3D-printed resins had significantly lower flexural strength, modulus, and hardness than the conventional and milled resin composites and ceramic material (p < 0.001). Filler wt% demonstrated a linear relationship with modulus (p = 0.013, R2 = 0.821) and hardness (p = 0.018, R2 = 0.787) but not flexural strength (p = 0.056, R2 = 0.551). CONCLUSIONS: 3D-printed resins contain from 3% to 50% filler content. Filler wt% alone does not affect flexural strength, but strength may be affected by resin composition as well. Although the 3D-printed resins had lower flexural strength, modulus, and hardness than milled and conventional composite and ceramic, they demonstrated nonbrittle plastic behavior. CLINICAL SIGNIFICANCE: The properties of 3D-printed resins vary based on their composition, which affects their clinical applications.


Assuntos
Implantes Dentários , Teste de Materiais , Propriedades de Superfície , Estresse Mecânico , Materiais Dentários/química , Resinas Compostas/química , Porcelana Dentária/química , Impressão Tridimensional , Coroas
18.
J Esthet Restor Dent ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623067

RESUMO

OBJECTIVES: This study was aimed to obtain an experimental bleaching agent by adding casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in order to eliminate the mineral loss on the tooth surface after bleaching and to evaluate the bleaching effectiveness. MATERIALS AND METHODS: In this study, experimental bleaching agents containing 1%, 3% CPP-ACP and without CPP-ACP were obtained. Bleaching effectiveness (color change), the effect of bleaching agents on mineral content (energy dispersive x-ray spectroscopy), surface morphology (scanning electron microscope), and surface hardness of enamel (Vicker's microhardness) before and after bleaching were evaluated. The obtained data were statistically analyzed. RESULTS: When the bleaching levels of the groups were compared, no statistically significant difference was observed between the control and 1% CPP-ACP groups (p > 0.05) while the addition of 3% CPP-ACP decreased significantly the effectiveness of the bleaching agent (p < 0.05). When the effects of experimental bleaching agents on surface hardness were examined, while the enamel surface hardness decreased statistically significantly after application in the control group (p < 0.05), no statistically significant change was observed in surface hardness after the application of 1% CPP-ACP containing bleaching agent (p > 0.05). However, a statistically significant increase was observed in surface hardness after the application of 3% CPP-ACP containing bleaching agent (p < 0.05). When the Ca and P ratio of the groups were compared, no statistically significant difference was observed between the control and 1% CPP-ACP groups (p > 0.05), while they increased significantly in 3% CPP-ACP group (p < 0.05). CONCLUSIONS: The addition of 1% CPP-ACP to the bleaching agent had positive effects on the mineral content and surface hardness of the enamel, and did not negatively affect the whitening effectiveness. CLINICAL SIGNIFICANCE: Adding CPP-ACP to the bleaching agent at appropriate concentrations can eliminate possible negative effects without compromising the effectiveness of the bleaching agent.

19.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542935

RESUMO

The phase, mechanical properties, corrosion resistance, hydrophobicity, and interfacial contact resistance of Hastelloy X were investigated to evaluate its performance in proton exchange membrane fuel cells (PEMFCs). For comparison, the corresponding performance of 304 stainless steel (304SS) was also tested. Hastelloy X exhibited a single-phase face-centered cubic structure with a yield strength of 445.5 MPa and a hardness of 262.7 HV. Both Hastelloy X and 304SS exhibited poor hydrophobicity because the water contact angles were all below 80°. In a simulated PEMFC working environment (0.5 M H2SO4 + 2 ppm HF, 80 °C, H2), Hastelloy X exhibited better corrosion resistance than 304SS. At 140 N·cm-2, the interfacial contact resistance of Hastelloy X can reach as low as 7.4 mΩ·cm2. Considering its overall performance, Hastelloy X has better potential application than 304SS as bipolar plate material in PEMFCs.

20.
Environ Geochem Health ; 46(4): 134, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483664

RESUMO

Familiarity with the chemical characteristics of regional groundwater can provide important guidance and reference for the development of regional groundwater exploitation. Jianghan Plain has been reported to have high groundwater total hardness (TH), resulting in the inability of local groundwater to be directly used as drinking water. In order to explore the causes of high TH, the paper analyzed the hydrochemical characteristics of shallow groundwater in Jianghan Plain combined with software of SPSS, JMP, and PHEEQC. The results showed that the cations in the groundwater in the area were mainly Ca2+, while the anions were mainly HCO3-. 20% of groundwater exceed the China national guideline for TH (i.e., 450 mg/L). The groundwater chemistry in the study area was controlled by three main factors of dissolution of carbonate rocks, human activities, and redox conditions, among which the interaction between water and rock had the greatest impact. The water carbonate rock interaction within Jianghan Plain was affected by various factors such as water flow and aquifers and showed a gradually weakening trend from west to east. This work not only strengthened the understanding of the causes of the high TH of groundwater in the region, but also provided reference value for regional groundwater environmental management.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Dureza , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Qualidade da Água , Água Potável/análise , China , Carbonatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA