Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 15(8): e0003824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38958440

RESUMO

The physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate, Alteromonas sp. ALT199 strain 4B03, and the related type-strain A. macleodii 27126 both form large (>500 µm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole-genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out of galE (ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respective galE mutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also form aggregates with chitin particles, but their galE mutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but their galE mutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains of Alteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement for galE is evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes. IMPORTANCE: Heterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2 by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2 sequestration via the formation of marine snow. We find that two members of the prevalent particle-associated genus Alteromonas can form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement for galE in aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.


Assuntos
Alteromonas , UDPglucose 4-Epimerase , Alteromonas/genética , Alteromonas/enzimologia , Alteromonas/metabolismo , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Água do Mar/microbiologia , Sequenciamento Completo do Genoma
2.
Mar Pollut Bull ; 105(1): 341-50, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26902683

RESUMO

A study of the efficiency of hydrodynamic cavitation and separation was carried out to evaluate an innovative, environmentally safe and acceptable system for ballast water treatment for reducing the risk of introducing non-native species worldwide. Mesocosm experiments were performed to assess the morphological changes and viability of zooplankton (copepods), Artemia salina cysts, and the growth potential of marine bacteria after the hydrodynamic cavitation treatment with a different number of cycles. Our preliminary results confirmed the significant efficiency of the treatment since more than 98% of the copepods and A. salina cysts were damaged, in comparison with the initial population. The efficiency increased with the number of the hydrodynamic cavitation cycles, or in combination with a separation technique for cysts. There was also a significant decrease in bacterial abundance and growth rate, compared to the initial number and growth potential.


Assuntos
Artemia , Bactérias , Copépodes , Purificação da Água/métodos , Animais , Cistos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA