Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(10): 1814-1827, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36167069

RESUMO

Ischemic stroke, caused by vessel blockage, results in cerebral infarction, the death of brain tissue. Previously, quantitative trait locus (QTL) mapping of cerebral infarct volume and collateral vessel number identified a single, strong genetic locus regulating both phenotypes. Additional studies identified RAB GTPase-binding effector protein 2 (Rabep2) as the casual gene. However, there is yet no evidence that variation in the human ortholog of this gene plays any role in ischemic stroke outcomes. We established an in vivo evaluation platform in mice by using adeno-associated virus (AAV) gene replacement and verified that both mouse and human RABEP2 rescue the mouse Rabep2 knockout ischemic stroke volume and collateral vessel phenotypes. Importantly, this cross-species complementation enabled us to experimentally investigate the functional effects of coding sequence variation in human RABEP2. We chose four coding variants from the human population that are predicted by multiple in silico algorithms to be damaging to RABEP2 function. In vitro and in vivo analyses verify that all four led to decreased collateral vessel connections and increased infarct volume. Thus, there are naturally occurring loss-of-function alleles. This cross-species approach will expand the number of targets for therapeutics development for ischemic stroke.


Assuntos
AVC Isquêmico , Alelos , Animais , Encéfalo/metabolismo , Mapeamento Cromossômico , Humanos , Camundongos , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Hum Mutat ; 35(2): 202-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186831

RESUMO

Triggered by the sequencing of the human genome, personalized medicine has been one of the fastest growing research areas in the last decade. Multiple software and hardware technologies have been developed by several projects, culminating in the exponential growth of genetic data. Considering the technological developments in this field, it is now fairly easy and inexpensive to obtain genetic profiles for unique individuals, such as those performed by several genetic analysis companies. The availability of computational tools that simplify genetic data analysis and the disclosure of biomedical evidences are of utmost importance. We present Variobox, a desktop tool to annotate, analyze, and compare human genes. Variobox obtains variant annotation data from WAVe, protein metadata annotations from Protein Data Bank, and sequences are obtained from Locus Reference Genomic or RefSeq databases. To explore the data, Variobox provides an advanced sequence visualization that enables agile navigation through genetic regions. DNA sequencing data can be compared with reference sequences retrieved from LRG or RefSeq records, identifying and automatically annotating new potential variants. These features and data, ranging from patient sequences to HGVS-compliant variant descriptions, are combined in an intuitive interface to analyze genes and variants. Variobox is a Java application, available at http://bioinformatics.ua.pt/variobox.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Anotação de Sequência Molecular , Sequência de Aminoácidos , Sequência de Bases , Humanos , Medicina de Precisão , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA