Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.174
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866482

RESUMO

SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss-of-function mutations in SLURP1 lead to a rare autosomal recessive palmoplantar keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as pachyonychia congenita and Olmsted syndrome show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knock-out and Slurp2X knock-out, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals includes augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed slightly reduced glabrous skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knock-out mice. Primary sensory neurons innervating hindpaw glabrous skin from Slurp2X knock-out mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knock-out mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.


Assuntos
Antígenos Ly , Ceratodermia Palmar e Plantar , Camundongos Knockout , Ativador de Plasminogênio Tipo Uroquinase , Animais , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/patologia , Ativador de Plasminogênio Tipo Uroquinase/genética , Camundongos , Feminino , Antígenos Ly/genética , Antígenos Ly/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Limiar da Dor/fisiologia
2.
J Neurosci ; 44(6)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38124021

RESUMO

Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active µ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.


Assuntos
Analgésicos Opioides , Hiperalgesia , Camundongos , Masculino , Animais , Analgésicos Opioides/efeitos adversos , Hiperalgesia/metabolismo , Canais Iônicos , Nociceptores , Medula Espinal/metabolismo , Dor/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36378366

RESUMO

Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.


Assuntos
Antineoplásicos , Neuralgia , Humanos , Canais de Cátion TRPV/uso terapêutico , Hiperalgesia/tratamento farmacológico
4.
Brain ; 147(7): 2507-2521, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577773

RESUMO

Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.


Assuntos
Analgésicos Opioides , Tolerância a Medicamentos , Hiperalgesia , Morfina , Plasticidade Neuronal , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Animais , Morfina/farmacologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Tolerância a Medicamentos/fisiologia , Camundongos , Analgésicos Opioides/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Mol Pain ; 20: 17448069241226960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38172075

RESUMO

Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.


Assuntos
Analgésicos Opioides , Hiperalgesia , Ratos , Masculino , Animais , Hiperalgesia/metabolismo , Analgésicos Opioides/metabolismo , Ratos Sprague-Dawley , Tonsila do Cerebelo/metabolismo , Dor/metabolismo , Fentanila , Córtex Pré-Frontal/metabolismo
6.
Mol Pain ; 20: 17448069241259535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773702

RESUMO

Methylene blue (MB) has been shown to reduce mortality and morbidity in vasoplegic patients after cardiac surgery. Though MB is considered to be safe, extravasation of MB leading to cutaneous toxicity has been reported. In this study, we sought to characterize MB-induced cutaneous toxicity and investigate the underlying mechanisms. To induce MB-induced cutaneous toxicity, we injected 64 adult male Sprague-Dawley rates with 200 µL saline (vehicle) or 1%, 0.1%, or 0.01% MB in the plantar hind paws. Paw swelling, skin histologic changes, and heat and mechanical hyperalgesia were measured. Injection of 1%, but not 0.1% or 0.01% MB, produced significant paw swelling compared to saline. Injection of 1% MB produced heat hyperalgesia but not mechanical hyperalgesia. Pain behaviors were unchanged following injections of 0.1% or 0.01% MB. Global transcriptomic analysis by RNAseq identified 117 differentially expressed genes (111 upregulated, 6 downregulated). Ingenuity Pathway Analysis showed an increased quantity of leukocytes, increased lipids, and decreased apoptosis of myeloid cells and phagocytes with activation of IL-1ß and Fos as the two major regulatory hubs. qPCR showed a 16-fold increase in IL-6 mRNA. Thus, using a novel rat model of MB-induced cutaneous toxicity, we show that infiltration of 1% MB into cutaneous tissue causes a dose-dependent pro-inflammatory response, highlighting potential roles of IL-6, IL-1ß, and Fos. Thus, anesthesiologists should administer dilute MB intravenously through peripheral venous catheters. Higher concentrations of MB (1%) should be administered through a central venous catheter to minimize the risk of cutaneous toxicity.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Inflamação , Azul de Metileno , Ratos Sprague-Dawley , Pele , Animais , Masculino , Azul de Metileno/farmacologia , Azul de Metileno/administração & dosagem , Hiperalgesia/patologia , Hiperalgesia/induzido quimicamente , Inflamação/patologia , Inflamação/induzido quimicamente , Pele/efeitos dos fármacos , Pele/patologia , Relação Dose-Resposta a Droga , Temperatura Alta , Ratos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
7.
Mol Pain ; 20: 17448069241227922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38195088

RESUMO

While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that low concentration (100 nM) of morphine reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.


Assuntos
Morfina , Nociceptores , Animais , Humanos , Ratos , Analgésicos Opioides/efeitos adversos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Lipopolissacarídeos/farmacologia , Morfina/efeitos adversos , Dor , Ratos Sprague-Dawley , Receptor 4 Toll-Like
8.
Biochem Biophys Res Commun ; 724: 150217, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865809

RESUMO

Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.


Assuntos
Flavonas , Hiperalgesia , Neuralgia , Ratos Sprague-Dawley , Animais , Ratos , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Gabapentina/farmacologia , Gabapentina/uso terapêutico , Nociceptividade/efeitos dos fármacos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Feminino , Ácido gama-Aminobutírico/metabolismo , Aminas/farmacologia , Aminas/uso terapêutico , Nervo Isquiático/lesões , Nervo Isquiático/efeitos dos fármacos , Vulvodinia/tratamento farmacológico , Constrição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico
9.
Biochem Biophys Res Commun ; 710: 149875, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604073

RESUMO

Stress-induced hyperalgesia (SIH) is induced by repeated or chronic exposure to stressful or uncomfortable environments. However, the neural mechanisms involved in the modulatory effects of the periaqueductal gray (PAG) and its associated loops on SIH development hav e not been elucidated. In the present study, we used chronic restraint stress (CRS)-induced hyperalgesia as a SIH model and manipulated neuronal activity via a pharmacogenetic approach to investigate the neural mechanism underlying the effects of descending pain-modulatory pathways on SIH. We found that activation of PAG neurons alleviates CRS-induced hyperalgesia; on the other hand, PAG neurons inhibition facilitates CRS-induced hyperalgesia. Moreover, this modulatory effect is achieved by the neurons which projecting to the rostral ventromedial medulla (RVM). Our data thus reveal the functional role of the PAG-RVM circuit in SIH and provide analgesic targets in the brain for clinical SIH treatment.


Assuntos
Hiperalgesia , Substância Cinzenta Periaquedutal , Ratos , Camundongos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Dor/metabolismo , Neurônios/metabolismo
10.
BMC Med ; 22(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715017

RESUMO

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Assuntos
Células Endoteliais , Glucose , Hiperalgesia , Privação do Sono , Medula Espinal , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Privação do Sono/complicações , Glicólise/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
11.
J Neurosci Res ; 102(1): e25266, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284853

RESUMO

Chronic stress induces a variety of physiological and/or psychological abnormalities, including hyperalgesia. Researchers have discovered sex differences in the prevalence of stress-induced hyperalgesia (SIH) in recent years. Sex differences may be one of the reasons for the heterogeneity of susceptibility to stress-related diseases. In this review, the potential mechanisms of sex differences in SIH are discussed, such as hypothalamus-pituitary-adrenal axis responses, regulation of sex hormones, and immune system responses.


Assuntos
Hiperalgesia , Caracteres Sexuais , Masculino , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal
12.
Brain Behav Immun ; 117: 100-111, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199516

RESUMO

Oxycodone is the most prescribed opioid for pain management and has been available in clinics for almost a century, but effects of chronic oxycodone have been studied less than morphine in preclinical and clinical studies. Newly developed depression has been coupled with chronic oxycodone use in a few clinical studies, but no preclinical studies have investigated the pathogenesis of oxycodone-induced depression. Gut microbiome changes following oxycodone use is an understudied area, and interleukin-17A (IL-17A) is linked to both the development of mood disorders and regulation of gut microbiome. The present study investigated effects of chronic oxycodone exposure on mood-related behaviors (depression and anxiety), pain hypersensitivity, physical dependence, immune markers, and the gut microbiome and tested the hypothesis that blocking IL-17A with a systemically administered monoclonal antibody reduces oxycodone-derived effects. Oxycodone (using an incremental dosing regimen) or saline was injected twice a day for 12 days. IL-17A Ab (200 µg/100 µl) or saline was administered every 3rd day during the 12-day interval. Chronic oxycodone induced a depression-like effect, but not anxiogenic- or anxiolytic-like effects; promoted hyperalgesia; increased IL-17A and IL-6 levels in the ventral tegmental area (VTA); and induced physical dependence. IL-17A Ab co-administration with oxycodone prevented the depression-like effect and hyperalgesia, reduced naloxone-precipitated withdrawal signs, and normalized the increase in cytokine levels. Chronic oxycodone exposure did not affect gut microbiome and integrity. Our results identify a role for IL-17A in oxycodone-related behavioral and neuroimmune effects and show that IL-17A Ab has potential therapeutic value in blocking these effects. Given that humanized IL-17A Ab is approved for treatment of psoriasis and psoriatic arthritis, our findings point toward studying it for use in the treatment of oxycodone use disorder.


Assuntos
Oxicodona , Transtornos Relacionados ao Uso de Substâncias , Ratos , Animais , Oxicodona/farmacologia , Área Tegmentar Ventral , Interleucina-17/metabolismo , Interleucina-6/farmacologia , Depressão/tratamento farmacológico , Hiperalgesia/tratamento farmacológico
13.
J Biochem Mol Toxicol ; 38(3): e23669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459698

RESUMO

Paclitaxel (PTX) is a chemotherapeutic agent that is widely used for the treatment of several types of tumors. However, PTX-induced peripheral neuropathy (PIPN) is an adverse effect generally induced by long-term PTX use that significantly impairs the quality of life. Necroptosis has been implicated in various neurodegenerative disorders. Necroptosis of dorsal root ganglion neurons triggers the pathogenesis of PIPN. Therefore, the present study aims to investigate the role of spinal neuronal necroptosis in PIPN. It also explores the potential role of microglial polarization in necroptosis. We established rat models of PIPN via quartic PTX administration on alternate days (accumulated dose: 8 mg/kg). PTX induced obvious neuronal necroptosis and upregulated the expression of receptor-interacting protein kinase (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the spinal dorsal horn. These effects were inhibited with a necroptosis pathway inhibitor, necrostatin-1 (Nec-1). The effect of microglial polarization on the regulation of spinal necroptosis was elucidated by administering minocycline to inhibit PTX-induced M1 polarization of spinal microglia caused by PTX. We observed a significant inhibitory effect of minocycline on PTX-induced necroptosis in spinal cord cells, based on the downregulation of RIP3 and MLKL expression, and suppression of tumor necrosis factor-α and IL-ß synthesis. Additionally, minocycline improved hyperalgesia symptoms in PIPN rats. Overall, this study suggests that PTX-induced polarization of spinal microglia leads to RIP3/MLKL-regulated necroptosis, resulting in PIPN. These findings suggest a potential target for the prevention and treatment of neuropathic pain.


Assuntos
Neuralgia , Paclitaxel , Ratos , Animais , Paclitaxel/efeitos adversos , Microglia/patologia , Necroptose , Minociclina/efeitos adversos , Qualidade de Vida , Neuralgia/induzido quimicamente
14.
Eur J Oral Sci ; 132(1): e12961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984410

RESUMO

The present in vivo study investigated whether systemic administration of theanine attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with hyperalgesia. Complete Freund's adjuvant (CFA) was injected into the whisker pads of 24 rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was statistically significantly lower in CFA-inflamed rats compared to uninjected naïve rats, and this lowered threshold returned to control levels after 2 days of theanine administration. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to mechanical stimuli in anesthetized CFA-inflamed rats was statistically significantly lower after two days of theanine administration. In addition, the increased mean spontaneous discharge of SpVc WDR neurons in CFA-inflamed rats statistically significantly decreased after theanine administration. Similarly, theanine restored the expanded mean receptive field size in CFA-inflamed rats to control levels. Taken together, these results suggest that administration of theanine attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons. These findings support the potential of theanine as a therapeutic agent in complementary alternative medicine strategies to prevent inflammatory hyperalgesia.


Assuntos
Glutamatos , Hiperalgesia , Nociceptores , Ratos , Animais , Ratos Wistar , Inflamação/induzido quimicamente
15.
Neurol Sci ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396170

RESUMO

BACKGROUND: Central and peripheral sensitization are characterized by widespread hyperalgesia that is manifested by larger pain extent area and reduction in pressure pain threshold (PPT). PPT decreases in patients with migraine not only over the trigeminal cervical complex but also throughout the body. METHODS: A cross-sectional study was adopted to assess the local and widespread hyperalgesia in chronic and episodic migraine patients respect to healthy controls. The guidelines of Andersen's were used to evaluate the PPT bilaterally over 3 muscles in the trigemino-cervical complex (temporalis, sub-occipitalis, trapezius) and over 1 muscle far from this area (tensor fasciae latae). RESULTS: Thirty subjects with episodic migraine (35.8 ± 2.82 years), 30 with chronic migraine (53.03 ± 19.79 years), and 30 healthy controls (29.06 ± 14.03 years) were enrolled. The interaction effect was present for the trapezius muscle with a significant difference between the right and the left side in episodic group (p = 0.003). A group effect was highlighted in all four muscles analyzed such as suboccipital (p < 0.001), temporalis (p > 0.001), trapezius (p < 0.001), and TFL (p < 0.001). PPT was usually higher in the control group than in the episodic group which in turn was characterized by higher PPT values than the chronic group. CONCLUSIONS: People with chronic and episodic migraine presented lower PPT than healthy controls both in the trigeminal and in the extra-trigeminal area. People with chronic migraine presented lower PPT than episodic migraine only in the trigeminal area. Temporalis and sub-occipitalis are the most sensitive muscles in people with chronic and episodic migraine.

16.
Scand J Med Sci Sports ; 34(1): e14497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724768

RESUMO

Delayed onset muscle soreness (DOMS) develops after performing unaccustomed eccentric exercises. Animal studies have shown that DOMS is mechanical hyperalgesia through nociceptor sensitization induced by nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) upregulated by cyclooxygenase-2 (COX-2). However, no previous study has investigated these in relation to DOMS in humans. This study compared the first and second bouts of one-leg eccentric cycling (ECC) for changes in NGF, GDNF, and COX-2 mRNA in the vastus lateralis (VL). Seven healthy adults (18-40 years) performed two bouts of ECC (10 sets of 50 contractions) with 80% maximal voluntary concentric peak torque separated by 2 weeks (ECC1, ECC2). Muscle soreness that was assessed by a visual analog scale and maximal voluntary isometric contraction (MVC) torque of the knee extensors were measured before, immediately after (MVC only), 24 and 48 h post-exercise. Muscle biopsy was taken from the VL before the first bout from nonexercised leg (control) and 24 h after each bout from the exercised leg, and analyzed for NGF, GDNF, and COX-2 mRNA. Peak DOMS was more than two times greater and MVC torque at 48 h post-exercise was approximately 20% smaller after ECC1 than ECC2 (p < 0.05), suggesting the repeated bout effect. NGF mRNA level was higher (p < 0.05) post-ECC1 (0.79 ± 0.68 arbitrary unit) than control (0.06 ± 0.07) and post-ECC2 (0.08 ± 0.10). GDNF and COX-2 mRNA did not show significant differences between control, post-ECC1, and post-ECC2. These results suggest that an increase in NGF is associated with the development of DOMS in humans.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Adulto , Humanos , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia , Mialgia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Perna (Membro) , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento Neural/metabolismo , Contração Isométrica/fisiologia , RNA Mensageiro/metabolismo , Contração Muscular/fisiologia
17.
Pharmacology ; : 1-18, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643765

RESUMO

INTRODUCTION: Tissue injury results in the release of inflammatory mediators, including a cascade of algogenic substances, which contribute to the development of hyperalgesia. During this process, endogenous analgesic substances are peripherally released to counterbalance hyperalgesia. The present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE), and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the cholinergic system. METHODS: Male Swiss mice were subjected to paw withdrawal test. All the substances were injected via the intraplantar route. RESULTS: The main findings of this study were as follows: (1) carrageenan (Cg), TNF-α, CXCL-1, IL1-ß, NE, and PGE2 induced hyperalgesia; (2) the acetylcholinesterase enzyme inhibitor, neostigmine, reversed the hyperalgesia observed after Cg, TNF-α, CXCL-1, and IL1-ß injection; (3) the non-selective muscarinic receptor antagonist, atropine, and the selective muscarinic type 1 receptor (m1AChr) antagonist, telenzepine, potentiated the hyperalgesia induced by Cg and CXCL-1; (4) mecamylamine, a non-selective nicotinic receptor antagonist, potentiated the hyperalgesia induced by Cg, TNF-α, CXCL-1, and IL1-ß; (5) Cg, CXCL-1, and PGE2 increased the expression of the m1AChr and nicotinic receptor subunit α4protein. CONCLUSION: These results suggest that the cholinergic system may modulate the inflammatory pain induced by Cg, PGE2, TNF-α, CXCL-1, and IL1-ß.

18.
BMC Anesthesiol ; 24(1): 25, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218762

RESUMO

BACKGROUND: This meta-analysis aimed to explore the correlation between the different doses of remifentanil-based anaesthesia and postoperative pain in randomised trials. METHODS: The electronic databases including PubMed, Cochrane, clinical trial registries, and Google Scholar were searched up to November 2022 for randomised controlled trials (RCTs) that assessed the dose dependent efficacy of remifentanil for postoperative pain intensity and hyperalgesia. RESULTS: 31 studies involving 2019 patients were included for analysis. Compared with the high remifentanil dose administration, patients in low doses showed less postoperative pain intensity at 1-2 h (weighted mean differences (WMD): 0.60, 95% CI, 0.05 to 1.15), 3-8 h (WMD: 0.38, 95% CI, 0.00 to 0.75), 24 h (WMD: 0.26, 95% CI, 0.04 to 0.48) and 48 h (WMD: 0.32, 95% CI, 0.09 to 0.55). Remifentanil-free regimen failed to decrease the pain score at 24 h (WMD: 0.10, 95% CI, -0.10 to 0.30) and 48 h (WMD: 0.15, 95% CI, -0.22 to 0.52) in comparison with remifentanil-based anaesthesia. After excluding trials with high heterogeneity, the dose of the remifentanil regimen was closely correlated with the postoperative pain score (P=0.03). In addition, the dose of the remifentanil regimen was not associated with the incidence of postoperative nausea and vomiting (PONV) (P=0.37). CONCLUSIONS: Our meta-analysis reveals that the low dose of remifentanil infusion is recommendable for general anaesthesia maintenance. No evidence suggests that remifentanil-free regimen has superiority in reducing postoperative pain. Moreover, remifentanil doesn't have a dose dependent effect in initiating PONV. TRIAL REGISTRATION: The protocol of present study was registered with PROSPERO (CRD42022378360).


Assuntos
Dor Pós-Operatória , Náusea e Vômito Pós-Operatórios , Humanos , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Anestesia Geral , Hiperalgesia , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/induzido quimicamente , Náusea e Vômito Pós-Operatórios/induzido quimicamente , Remifentanil/administração & dosagem , Remifentanil/efeitos adversos , Remifentanil/uso terapêutico
19.
Lasers Med Sci ; 39(1): 143, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806837

RESUMO

The purpose of this study is to explore the potential application of photobiomodulation to irritable bowel syndrome. We established the following experimental groups: the Non-Stress + Sham group, which consisted of rats that were not restrained and were only subjected to sham irradiation; the Stress + Sham group, which underwent 1 hour of restraint stress followed by sham irradiation; and the Stress + Laser group, which was subjected to restraint stress and percutaneous laser irradiation bilaterally on the L6 dorsal root ganglia for 5 minutes each. The experiment was conducted twice, with three and two laser conditions examined. Following laser irradiation, a barostat catheter was inserted into the rat's colon. After a 30-minute acclimatization period, the catheter was inflated to a pressure of 60 mmHg, and the number of abdominal muscle contractions was measured over a 5-minute period. The results showed that photobiomodulation significantly suppressed the number of abdominal muscle contractions at average powers of 460, 70, and 18 mW. However, no significant suppression was observed at average powers of 1 W and 3.5 mW. This study suggests that photobiomodulation can alleviate visceral hyperalgesia induced by restraint stress, indicating its potential applicability to irritable bowel syndrome.


Assuntos
Hiperalgesia , Síndrome do Intestino Irritável , Terapia com Luz de Baixa Intensidade , Ratos Sprague-Dawley , Restrição Física , Animais , Terapia com Luz de Baixa Intensidade/métodos , Ratos , Hiperalgesia/radioterapia , Hiperalgesia/etiologia , Masculino , Síndrome do Intestino Irritável/radioterapia , Síndrome do Intestino Irritável/terapia , Estresse Psicológico , Contração Muscular/efeitos da radiação , Músculos Abdominais/efeitos da radiação , Modelos Animais de Doenças
20.
Inflammopharmacology ; 32(1): 127-148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153538

RESUMO

We investigated the role that innate immunological signaling pathways, principally nod-like receptors (NLRs) and inflammasomes, in the manifestation of the contradictory outcomes associated with opioids, namely hyperalgesia, and tolerance. The utilization of opioids for pain management is prevalent; nonetheless, it frequently leads to an increased sensitivity to pain (hyperalgesia) and reduced efficacy of the medication (tolerance) over an extended period. This, therefore, represents a major challenge in the area of chronic pain treatment. Recent studies indicate that the aforementioned negative consequences are partially influenced by the stimulation of NLRs, specifically the NLRP3 inflammasome, and the subsequent assembly of the inflammasome. This process ultimately results in the generation of inflammatory cytokines and the occurrence of neuroinflammation and the pathogenesis of hyperalgesia. We also explored the putative downstream signaling cascades activated by NOD-like receptors (NLRs) and inflammasomes in response to opioid stimuli. Furthermore, we probed potential therapeutic targets for modifying opioid-induced hyperalgesia, with explicit emphasis on the activation of the NLRP3 inflammasome. Ultimately, our findings underscore the significance of conducting additional research in this area that includes an examination of the involvement of various NLRs, immune cells, and genetic variables in the development of opioid-induced hyperalgesia and tolerance. The present review provides substantial insight into the possible pathways contributing to the occurrence of hyperalgesia and tolerance in individuals taking opioids.


Assuntos
Dor Crônica , Hiperalgesia , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Analgésicos Opioides/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA