Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 70(4): e12969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825816

RESUMO

Population dynamics of aquatic ciliates are controlled "bottom-up" via food supply and "top-down" by grazing and parasitism. While intrinsic growth rates of ciliates under saturating food conditions have been studied in some detail, mortality rates induced by starvation have received little attention thus far. To this end, we examined the response of three algivorous freshwater ciliate species to starvation using three different optical methods. Two of these methods, i.e. ciliate mortality rates (δ) estimated from (i) numerical response experiments and (ii) the rate of decline (ROD) in cell numbers, investigated the response of the ciliate population using conventional light microscopy. The third method, imaging cytometry using a FlowCAM instrument, monitored single cells during the starvation experiment. Like light microscopy, the FlowCAM approach estimated δ based on ROD in the experimental containers. However, imaging cytometry also measured the relative cellular chlorophyll a content in the ciliates' food vacuoles as a proxy for the nutritional status of the cells. The linear decline of the cellular chl. a yielded an independent estimate of δ that was similar to δ calculated from ROD. Additionally, the FlowCAM measurements revealed a high degree of phenotypic plasticity of the ciliates when exposed to starvation.


Assuntos
Cilióforos , Plâncton , Clorofila A , Ecologia , Cadeia Alimentar , Água Doce , Cilióforos/fisiologia
2.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628514

RESUMO

The current methods for measuring the DNA damage response (DDR) are relatively labor-intensive and usually based on Western blotting, flow cytometry, and/or confocal immunofluorescence analyses. They require many cells and are often limited to the assessment of a single or few proteins. Here, we used the Celigo® image cytometer to evaluate the cell response to DNA-damaging agents based on a panel of biomarkers associated with the main DDR signaling pathways. We investigated the cytostatic or/and the cytotoxic effects of these drugs using simultaneous propidium iodide and calcein-AM staining. We also describe new dedicated multiplexed protocols to investigate the qualitative (phosphorylation) or the quantitative changes of eleven DDR markers (H2AX, DNA-PKcs, ATR, ATM, CHK1, CHK2, 53BP1, NBS1, RAD51, P53, P21). The results of our study clearly show the advantage of using this methodology because the multiplexed-based evaluation of these markers can be performed in a single experiment using the standard 384-well plate format. The analyses of multiple DDR markers together with the cell cycle status provide valuable insights into the mechanism of action of investigational drugs that induce DNA damage in a time- and cost-effective manner due to the low amounts of antibodies and reagents required.


Assuntos
Antineoplásicos , Dano ao DNA , Antineoplásicos/farmacologia , Ciclo Celular , DNA , Fosforilação
3.
Cytometry A ; 93(12): 1267-1270, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184320

RESUMO

Molecular analysis of rare single cells like circulating tumor cells (CTCs) from whole blood patient samples bears multiple challenges. One of those challenges is the efficient and ideally loss-free isolation of CTCs over contaminating white and red blood cells. While there is a multitude of commercial and non-commercial systems available for the enrichment of CTCs their cell output does not deliver the purity most molecular analysis methods require. Here we describe the ALS CellCelector™ which can solve this challenge allowing the retrieval of 100% pure single CTCs from blood processed by different upstream enrichment techniques. It is a multifunctional, extremely flexible system for automated screening of cell culture plates, Petri dishes, and microscope slides. Fixed or live single cells or multicellular clusters detected during screening can be picked out of those plates automatically. The complete scan and picking process is fully documented hence allowing highest standardization and reproducibility of all processes. Use of CellCelector allowed the isolation of pure single tumor cells or clusters from liquid biopsies of breast, prostate, ovarian, colorectal, lung, and brain cancers for their subsequent molecular analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Separação Celular/métodos , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/métodos , Contagem de Células/métodos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Biópsia Líquida/métodos , Reprodutibilidade dos Testes
4.
Cytometry A ; 91(5): 470-481, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28264140

RESUMO

The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry.


Assuntos
Holografia/métodos , Microscopia de Contraste de Fase/métodos , Processamento de Sinais Assistido por Computador , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Controle de Qualidade
5.
Cytometry A ; 89(8): 720-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27144299

RESUMO

Fluorescence in situ hybridization (FISH) is a microscopy technique which uses a fluorescent probe to detect DNA sequences and is generally performed on metaphase spreads or interphase nuclei of intact cells on a slide. In a diagnostic laboratory, cells are hybridized with fluorescent probes and up to 200 cells counted for the number of cells with probe "spots." Recent modifications to standard FISH include immuno-FISH, where chromosomal abnormalities are detected only in cells by their phenotype, and S-FISH where probe hybridization is performed on whole cells in suspension. Here we describe the development of an immuno-S-FISH method that combines immunophenotyping and FISH analysis of cells in suspension followed by analysis on an imaging flow cytometer. This single platform technique couples microscopy with flow cytometry and "spot" detection of bound FISH probe. Automated immuno-S-FISH enables large numbers of analyzed cells to be identified by phenotype and assessed for specific chromosomal determinants by FISH. This novel robust method enables quantitative cell population analysis and "spot" counting for large numbers of cells. We report method optimization of this imaging immuno-S-FISH flow cytometry protocol which has capability for many clinical applications. © 2016 International Society for Advancement of Cytometry.


Assuntos
Aberrações Cromossômicas , Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente/métodos , Sequência de Bases/genética , Núcleo Celular/genética , Corantes Fluorescentes , Humanos , Interfase , Hibridização de Ácido Nucleico
6.
BMC Cancer ; 16: 355, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27268034

RESUMO

BACKGROUND: TFEB (transcription factor EB) regulates metabolic homeostasis through its activation of lysosomal biogenesis following its nuclear translocation. TFEB activity is inhibited by mTOR phosphorylation, which signals its cytoplasmic retention. To date, the temporal relationship between alterations to mTOR activity states and changes in TFEB subcellular localization and concentration has not been sufficiently addressed. METHODS: mTOR was activated by renewed addition of fully-supplemented medium, or inhibited by Torin1 or nutrient deprivation. Single-cell TFEB protein levels and subcellular localization in HeLa and MCF7 cells were measured over a time course of 15 hours by multispectral imaging cytometry. To extract single-cell level information on heterogeneous TFEB activity phenotypes, we developed a framework for identification of TFEB activity subpopulations. Through unsupervised clustering, cells were classified according to their TFEB nuclear concentration, which corresponded with downstream lysosomal responses. RESULTS: Bulk population results revealed that mTOR negatively regulates TFEB protein levels, concomitantly to the regulation of TFEB localization. Subpopulation analysis revealed maximal sensitivity of HeLa cells to mTOR activity stimulation, leading to inactivation of 100 % of the cell population within 0.5 hours, which contrasted with a lower sensitivity in MCF7 cells. Conversely, mTOR inhibition increased the fully active subpopulation only fractionally, and full activation of 100 % of the population required co-inhibition of mTOR and the proteasome. Importantly, mTOR inhibition activated TFEB for a limited duration of 1.5 hours, and thereafter the cell population was progressively re-inactivated, with distinct kinetics for Torin1 and nutrient deprivation treatments. CONCLUSION: TFEB protein levels and subcellular localization are under control of a short-term rheostat, which is highly responsive to negative regulation by mTOR, but under conditions of mTOR inhibition, restricts TFEB activation in a manner dependent on the proteasome. We further identify a long-term, mTOR-independent homeostatic control negatively regulating TFEB upon prolonged mTOR inhibition. These findings are of relevance for developing strategies to target TFEB activity in disease treatment. Moreover, our quantitative approach to decipher phenotype heterogeneity in imaging datasets is of general interest, as shifts between subpopulations provide a quantitative description of single cell behaviour, indicating novel regulatory behaviors and revealing differences between cell types.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Análise de Célula Única/métodos , Serina-Treonina Quinases TOR/metabolismo , Citometria de Fluxo , Células HeLa , Homeostase , Humanos , Células MCF-7 , Microscopia de Fluorescência , Fosforilação , Transdução de Sinais , Fatores de Tempo
7.
Mol Pharm ; 13(2): 428-37, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702994

RESUMO

Current research in cancer therapy is beginning to shift toward the use of combinational drug treatment regimens. However, the efficient delivery of drug combinations is governed by a number of complex factors in the clinical setting. Therefore, the ability to synchronize the pharmacokinetics of the individual therapeutic agents present in combination not only to allow for simultaneous tumor accumulation but also to allow for a synergistic relationship at the intracellular level could prove to be advantageous. In this work, we report the development of a novel folic acid-targeted liposomal formulation simultaneously co-loaded with C6 ceramide and doxorubicin [FA-(C6+Dox)-LP]. In vitro cytotoxicity assays showed that the FA-(C6+Dox)-LP was able to significantly reduce the IC50 of Dox when compared to that after the treatment with the doxorubicin-loaded liposomes (Dox-LP) as well as the untargeted drug co-loaded (C6+Dox)-LP on HeLa, A2780-ADR, and H69-AR cells. The analysis of the cell cycle distribution showed that while the C6 liposomes (C6-LP) did not cause cell cycle arrest, all the Dox-containing liposomes mediated cell cycle arrest in HeLa cells in the G2 phase at Dox concentrations of 0.3 and 1 µM and in the S phase at the higher concentrations. It was also found that this arrest in the S phase precedes the progression of the cells to apoptosis. The targeted FA-(C6+Dox)-LP were able to significantly enhance the induction of apoptotic events in HeLa cell monolayers as compared to the other treatment groups. Next, using time-lapse phase holographic imaging microscopy, it was found that upon treatment with the FA-(C6+Dox)-LP, the HeLa cells underwent rapid progression to apoptosis after 21 h as evidenced by a drastic drop in the average area of the cells after loss of cell membrane integrity. Finally, upon evaluation in a HeLa spheroid cell model, treatment with the FA-(C6+Dox)-LP showed significantly higher levels of cell death compared to those with C6-LP and Dox-LP. Overall, this study clearly shows that the co-delivery of C6 ceramide and Dox using a liposomal platform significantly correlates with an antiproliferative effect due to cell cycle regulation and subsequent induction of apoptosis and thus warrants its further evaluation in preclinical animal models.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ceramidas/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Lipossomos/administração & dosagem , Antibióticos Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos , Feminino , Humanos , Técnicas In Vitro , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
8.
Small ; 11(7): 797-803, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25285963

RESUMO

A quantum dot method for highly efficient labelling of single adenoviral particles is developed. The technique has no impact on viral fitness and allows the imaging and tracking of virus binding and internalisation events using a variety of techniques including imaging cytometry and confocal microscopy. The method is applied to characterise the tropism of different adenoviral vectors.


Assuntos
Adenoviridae/metabolismo , Citometria de Fluxo/métodos , Pontos Quânticos/metabolismo , Coloração e Rotulagem , Adenoviridae/classificação , Biotinilação , Linhagem Celular Tumoral , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Endocitose , Terapia Genética , Humanos , Sorotipagem , Tropismo
9.
Adv Sci (Weinh) ; 11(29): e2307591, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864546

RESUMO

Image-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation. Unique to CytoMAD is its "morphology distillation", symbiotically paired with deep-learning image-contrast translation-offering additional interpretable insights into label-free cell morphology. The versatile efficacy of CytoMAD is demonstrated in augmenting the power of biophysical imaging cytometry. It allows integrated label-free classification of human lung cancer cell types and accurately recapitulates their progressive drug responses, even when trained without the drug concentration information. CytoMAD  also allows joint analysis of tumor biophysical cellular heterogeneity, linked to epithelial-mesenchymal plasticity, that standard fluorescence markers overlook. CytoMAD can substantiate the wide adoption of biophysical cytometry for cost-effective diagnosis and screening.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Linhagem Celular Tumoral
10.
Methods Mol Biol ; 2669: 245-255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37247065

RESUMO

Histological techniques based on tissue colorations (e.g., hematoxylin-eosin, Sirius red) and immunostaining remain gold standard methodologies for diagnostic or phenotyping purposes in liver disease research and clinical hepatology. With the development of -omics technologies, greater information can be extracted from tissue sections. We describe a sequential immunostaining protocol consisting of repetitive cycles of immunostaining and chemically induced antibody stripping that can be readily applied to various formalin-fixed tissues (liver or other organs, mouse or human) and does not require specific equipment or commercial kits. Importantly, the combination of antibodies can be adapted according to specific clinical or scientific needs.


Assuntos
Anticorpos , Corantes , Humanos , Animais , Camundongos , Formaldeído , Hematoxilina , Fígado
11.
J Immunol Methods ; 506: 113290, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35644255

RESUMO

Immunotherapies for the treatment of cancer have spurred the development of new drugs that seek to harness the ability of T cells to recognize and kill malignant cells. There is a substantial need to evaluate how these experimental drugs influence T cell functional outputs in co-culture systems that contain cancerous cells. We describe an imaging cytometry-based platform that can simultaneously quantify activated T cells and the capacity of these T cells to kill cancer cells. Our platform was developed using the Nur77-GFP reporter system because GFP expression provides a direct readout of T cell activation that is induced by T cell antigen receptor (TCR) signaling. We combined the Nur77-GFP reporter system with a cancer cell line that displays a TCR-specific antigen and evaluated the relationship between T cell activation and cancer cell death. We demonstrate that imaging cytometry can be used to quantify the number of activated cytotoxic CD8+ T cells (CTLs) and the capacity of these CTLs to recognize and kill adherent MC38 cancer cells. We tested whether this platform could evaluate heterogenous lymphocyte populations by quantifying the proportion of antigen-specific activated T cells in co-cultures that contain unresponsive lymphocytes. The effects of a SRC family kinase inhibitor on CTL activation and MC38 cell death were also determined. Our findings demonstrate that the Nur77-GFP reporter system can be used to evaluate the effects of diverse treatment conditions on T cell-cancer co-cultures in a microtiter plate-based format by imaging cytometry. We anticipate the combined analysis of T cell activation with T cell-mediated cancer cell death can be used to rapidly assess immuno-oncology drug candidates and T cell-based therapeutics.


Assuntos
Ativação Linfocitária , Linfócitos T Citotóxicos , Citotoxicidade Imunológica , Citometria por Imagem , Imunidade Celular , Receptores de Antígenos de Linfócitos T
12.
Front Microbiol ; 13: 823109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495707

RESUMO

As primary producers, phytoplankton play an integral role in global biogeochemical cycles through their production of oxygen and fixation of carbon. They also provide significant ecosystem services, by supporting secondary production and fisheries. Phytoplankton biomass and diversity have been identified by the Global Ocean Observing System (GOOS) as Essential Ocean Variables (EOVs), properties that need to be monitored to better understand and predict the ocean system. Phytoplankton identification and enumeration relies on the skills and expertise of highly trained taxonomic analysts. The training of new taxonomic analysts is intensive and requires months to years of supervised training before an analyst is able to independently and consistently apply identification skills to a sample. During the COVID-19 pandemic, access to laboratories was greatly restricted and social distancing requirements prevented supervised training. However, access to phytoplankton imaging technologies such as the Imaging FlowCytobot (IFCB), FlowCam, and PlanktoScope, combined with open online taxonomic identification platforms such as EcoTaxa, provided a means to continue monitoring, research, and training activities remotely when in-person activities were restricted. Although such technologies can not entirely replace microscopy, they have a great potential for supporting an expansion in taxonomic training, monitoring, surveillance, and research capacity. In this paper we highlight a set of imaging and collaboration tools and describe how they were leveraged during laboratory lockdowns to advance research and monitoring goals. Anecdotally, we found that the use of imaging tools accelerated the training of new taxonomic analysts in our phytoplankton analysis laboratory. Based on these experiences, we outline how these technologies can be used to increase capacity in taxonomic training and expertise, as well as how they can be used more broadly to expand research opportunities and capacity.

13.
Int J Mol Sci ; 12(6): 3618-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747698

RESUMO

We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA)) based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 µm and 3.0 µm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 µL with 1 × 10(6) particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.


Assuntos
Citometria de Fluxo/instrumentação , Animais , Automação , Separação Celular , Corantes Fluorescentes/química , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Vídeo , Miócitos Cardíacos/citologia , Polimetil Metacrilato/química
14.
Cytometry A ; 77(4): 356-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20034006

RESUMO

To push the 100-plex envelope of suspension array technology, we have developed fully automated methods to acquire multispectral images of multiplexed quantum-dot (QD) encoded microspheres, to segment them in the images, to classify them based on their color code, and to quantify the multiplexed assays. Instead of coding microspheres with two colors and n levels, microspheres were coded with n colors and two levels (present or absent), thus transforming the classification problem from analog to digital. Images of multiplexed microspheres, sedimented at the bottom of microwells, were acquired through a tunable filter at the peak luminescence wavelength of each QD coding species in the system and the assay label wavelength. Another image of the light scattered from microspheres was captured in the excitation bandwidth that was utilized to localize microspheres in multispectral luminescence images. Objects in the acquired images are segmented and luminescence from each identified microsphere in each channel is recorded, based on which the "color code" of each microsphere is determined by applying a mathematical model and a classification algorithm. Our image analysis procedures could identify and classify microspheres with more than 97% accuracy, and the assay CVs were under 20%. These proof-of-principle results demonstrate that highly multiplexed quantification of specific proteins is possible with this rapid, small-sample volume format.


Assuntos
Bioensaio/métodos , Processamento de Imagem Assistida por Computador/métodos , Microesferas , Calibragem , Pontos Quânticos , Padrões de Referência , Software , Suspensões
15.
J Vet Diagn Invest ; 32(2): 324-328, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32065056

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an emerging porcine coronavirus that causes a tremendous economic burden on the swine industry. The assessment of PEDV-neutralizing antibody levels provides a valuable tool to assess and predict herd immunity. We evaluated the performance of a PEDV imaging cytometry-based high-throughput neutralization test (HTNT) and compared the HTNT to a fluorescent focus neutralization (FFN) assay using serum samples from pigs of known PEDV infection status (n = 159). Estimates of diagnostic sensitivity and specificity for HTNT and FFN assays derived from receiver-operator characteristic (ROC) curve analyses showed that both PEDV FFN and HTNT provided excellent diagnostic performance. However, in the laboratory, imaging cytometry provided an objective and semi-automated approach that removed human subjectivity from the testing process and reduced the read-time of a 96-well plate to < 4 min. In addition, imaging cytometry facilitated the rapid collection and long-term storage of test images and data for further evaluation or client consultation. For PEDV and other pathogens, imaging cytometry could provide distinct advantages over classic virus neutralization or FFN assays for the detection and quantitation of neutralizing antibody.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/veterinária , Ensaios de Triagem em Larga Escala/veterinária , Citometria por Imagem/veterinária , Testes de Neutralização/veterinária , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Doenças dos Suínos/diagnóstico , Animais , Anticorpos Neutralizantes/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Ensaios de Triagem em Larga Escala/métodos , Citometria por Imagem/métodos , Testes de Neutralização/métodos , Suínos , Doenças dos Suínos/virologia
16.
J Biomed Opt ; 25(6): 1-12, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32495539

RESUMO

SIGNIFICANCE: The use of optofluidic time-stretch flow cytometry enables extreme-throughput cell imaging but suffers from the difficulties of capturing and processing a large amount of data. As significant amounts of continuous image data are generated, the images require identification with high speed. AIM: We present an intelligent cell phenotyping framework for high-throughput optofluidic time-stretch microscopy based on the XGBoost algorithm, which is able to classify obtained cell images rapidly and accurately. The applied image recognition consists of density-based spatial clustering of applications with noise outlier detection, histograms of oriented gradients combining gray histogram fused feature, and XGBoost classification. APPROACH: We tested the ability of this framework against other previously proposed or commonly used algorithms to phenotype two groups of cell images. We quantified their performances with measures of classification ability and computational complexity based on AUC and test runtime. The tested cell image datasets were acquired from high-throughput imaging of over 20,000 drug-treated and untreated cells with an optofluidic time-stretch microscope. RESULTS: The framework we built beats other methods with an accuracy of over 97% and a classification frequency of 3000 cells / s. In addition, we determined the optimal structure of training sets according to model performances under different training set components. CONCLUSIONS: The proposed XGBoost-based framework acts as a promising solution to processing large flow image data. This work provides a foundation for future cell sorting and clinical practice of high-throughput imaging cytometers.


Assuntos
Algoritmos , Microscopia , Separação Celular , Citometria de Fluxo
17.
Front Immunol ; 10: 2657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798587

RESUMO

High parameter imaging is an important tool in the life sciences for both discovery and healthcare applications. Imaging Mass Cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI) are two relatively recent technologies which enable clinical samples to be simultaneously analyzed for up to 40 parameters at subcellular resolution. Importantly, these "Mass Cytometry Imaging" (MCI) modalities are being rapidly adopted for studies of the immune system in both health and disease. In this review we discuss, first, the various applications of MCI to date. Second, due to the inherent challenge of analyzing high parameter spatial data, we discuss the various approaches that have been employed for the processing and analysis of data from MCI experiments.


Assuntos
Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Análise de Dados , Humanos
18.
Biosensors (Basel) ; 9(2)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137820

RESUMO

Rapid multiplex cell surface marker analysis can expedite investigations in which large number of antigens need to be analyzed. Simultaneous analysis of multiple surface antigens at the same level of sensitivity is however limited in the current golden standard analysis method, flow cytometry. In this paper we introduce a surface plasmon resonance imaging (SPRi)-based technique for 44-plex parameter analysis using a single sample, in less than 20 min. We analyzed the expression on cells from five different cancer cell lines by SPRi on a 44-plex antibody array including 4 negative controls and compared the output with flow cytometry. The combined correlation of the markers that showed expression by flow cytometry was 0.76. The results demonstrate as a proof of principle that SPRi can be applied for rapid semi-quantitative multiplex cell surface marker analysis.


Assuntos
Antígenos de Neoplasias/análise , Citometria de Fluxo/métodos , Ressonância de Plasmônio de Superfície/métodos , Humanos , Células MCF-7
19.
J Biophotonics ; 11(12): e201800099, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30079614

RESUMO

Among all environmental pollutants, the toxic heavy metal cadmium is considered as a human carcinogen. Cadmium may induce cell death by apoptosis in various cell types, although the underlying mechanisms are still unclear. In this paper we show how a label-free digital holography (DH)-based technique is able to quantify the evolution of key biophysical parameters of cells during the exposure to cadmium for the first time. Murine embryonic fibroblasts NIH 3T3 are chosen here as cellular model for studying the cadmium effects. The results demonstrate that DH is able to retrieve the temporal evolution of different key parameters such as cell volume, projected area, cell thickness and dry mass, thus providing a full quantitative characterization of the cell physical behaviour during cadmium exposure. Our results show that the label-free character of the technique would allow biologists to perform systematic and reliable studies on cell death process induced by cadmium and we believe that more in general this can be easily extended to others heavy metals, thus avoiding the time-consuming, expensive and invasive label-based procedures used nowadays in the field. In fact, pollution by heavy metals is severe issue that needs rapid and reliable methods to be settled.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Holografia , Microscopia , Testes de Toxicidade , Animais , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA