Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276601

RESUMO

The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.


Assuntos
Compostos Férricos , Heme , Heme/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos Férricos/química , Prótons , Ferro/química , Imidazóis/química , Sistema Enzimático do Citocromo P-450
2.
Biochim Biophys Acta ; 1854(8): 919-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900360

RESUMO

Imidazole binding to three apolar distal heme pocket mutants of yeast cytochrome c peroxidase (CcP) has been investigated between pH4 and 8. The three CcP variants have Arg-48, Trp-51, and His-52 mutated to either all alanine, CcP(triAla), all valine, CcP(triVal), or all leucine residues, CcP(triLeu). The imidazole binding curves for all three mutants are biphasic indicating that each of the mutants exists in at least two conformational states with different affinities for imidazole. At pH7, the high-affinity conformations of the three CcP mutants bind imidazole between 3.8 and 4.7 orders of magnitude stronger than that of wild-type CcP while the low-affinity conformations have binding affinities about 2.5 orders of magnitude larger than wild-type CcP. Imidazole binding to the three CcP mutants is pH dependent with the strongest binding observed at high pH. Apparent pK(a) values for the transition in binding vary between 5.6 and 7.5 for the high-affinity conformations and between 6.2 and 6.8 for the low-affinity conformations of the CcP triple mutants. The kinetics of imidazole binding are also biphasic. The fast phase of imidazole binding to CcP(triAla) and CcP(triLeu) is linearly dependent on the imidazole concentration while the slow phase is independent of imidazole concentration. Both phases of imidazole binding to CcP(triVal) have a hyperbolic dependence on the imidazole concentration. The apparent association rate constants vary between 30 and 170 M(-1)s(-1) while the apparent dissociation rate constants vary between 0.05 and 0.43 s(-1). The CcP triple mutants have higher binding affinities for 1-methylimidazole and 4-nitroimidazole than does wild-type CcP.


Assuntos
Citocromo-c Peroxidase/química , Imidazóis/química , Mutação , Nitroimidazóis/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Citocromo-c Peroxidase/genética , Concentração de Íons de Hidrogênio , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Inorg Biochem ; 153: 88-102, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26499393

RESUMO

Equilibrium and kinetic properties of cyanide and imidazole binding to the heme domains of Sinorhizobium meliloti and Bradyrhizobium japonicum FixL (SmFixLH and BjFixLH) have been investigated between pH5 and 11. KD determinations were made at integral pH values, with the strongest binding at pH9 for both ligands. KD for the cyanide complexes of BjFixLH and SmFixLH is 0.15±0.09 and 0.50±0.20µM, respectively, and 0.70±0.01mM for imido-BjFixLH. The association rate constants are pH dependent with maximum values of 443±8 and 252±61M(-1)s(-1) for cyano complexes of BjFixLH and SmFixLH and (5.0±0.3)×10(4) and (7.0±1.4)×10(4)M(-1)s(-1) for the imidazole complexes. The dissociation rate constants are essentially independent of pH above pH5; (1.2±0.3)×10(-4) and (1.7±0.3)×10(-4)s(-1) for the cyano complexes of BjFixLH and SmFixLH, and (73±19) and (77±14) s(-1) for the imidazole complexes. Two ionizable groups in FixLH affect the rate of ligand binding. The more acidic group, identified as the heme 6 propionic acid, has a pKa of 7.6±0.2 in BjFixLH and 6.8±0.2 in SmFixLH. The second ionization is due to formation of hydroxy-FixLH with pKa values of 9.64±0.05 for BjFixLH and 9.61±0.05 for SmFixLH. Imidazole binding is limited by the rate of heme pocket opening with maximum observed values of 680 and 1270s(-1) for BjFixLH and SmFixLH, respectively.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/metabolismo , Cianetos/química , Hemeproteínas/química , Nitroimidazóis/química , Sinorhizobium meliloti/metabolismo , Heme/química , Histidina Quinase , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Ligantes , Mutação Puntual , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA