Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(42): e2204073119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215498

RESUMO

Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.


Assuntos
Ácido Algínico , Cálcio , Biopolímeros/química , Cátions Bivalentes , Plásticos , Polímeros/química , Polissacarídeos/química , Sefarose , Água/química
2.
Macromol Rapid Commun ; 45(5): e2300508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38049086

RESUMO

Interface tissue repair requires the construction of biomaterials with integrated structures of multiple protein types. Hydrogels that modulate internal porous structures provide a 3D microenvironment for encapsulated cells, making them promise for interface tissue repair. Currently, reduction of intrinsic immunogenicity and increase of bioactive extracellular matrix (ECM) secretion are issues to be considered in these materials. In this study, gelatin methacrylate (GelMA) hydrogel is used to encapsulate chondrocytes and construct a phase transition 3D cell culture system (PTCC) by utilizing the thermosensitivity of gelatin microspheres to create micropores within the hydrogel. The types of bioactive extracellular matrix protein formation by chondrocytes encapsulated in hydrogels are investigated in vitro. After 28 days of culture, GelMA PTCC forms an extracellular matrix predominantly composed of collagen type II, collagen type I, and fibronectin. After decellularization, the protein types and mechanical properties are well preserved, fabricating a decellularized tissue-engineered extracellular matrix and GelMA hydrogel interpenetrating network hydrogel (dECM-GelMA IPN) consisting of GelMA hydrogel as the first-level network and the ECM secreted by chondrocytes as the second-level network. This material has the potential to mediate the repair and regeneration of tendon-bone interface tissues with multiple protein types.


Assuntos
Gelatina , Hidrogéis , Hidrogéis/química , Gelatina/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Metacrilatos , Técnicas de Cultura de Células em Três Dimensões , Alicerces Teciduais/química
3.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513341

RESUMO

In this work, a thiol-ene coupling reaction was employed to prepare the semi-interpenetrating polymer network AEMs. The obtained QP-1/2 membrane exhibits high hydroxide conductivity (162.5 mS cm-1 at 80 °C) with a relatively lower swelling ratio, demonstrating its mechanical strength of 42 MPa. This membrane is noteworthy for its improved alkaline stability, as the semi-interpenetrating network effectively limits the attack of hydroxide. Even after being treated in 2 M NaOH at 80 °C for 600 h, 82.5% of the hydroxide conductivity is maintained. The H2/O2 fuel cell with QP-1/2 membrane displays a peak power density of 521 mW cm-2. Alkaline water electrolyzers based on QP-1/2 membrane demonstrated a current density of 1460 mA cm-2 at a cell voltage of 2.00 V using NiCoFe catalysts in the anode. All the results demonstrate that a semi-interpenetrating structure is a promising way to enhance the mechanical property, ionic conductivity, and alkaline stability of AEMs for the application of alkaline fuel cells and water electrolyzers.

4.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764467

RESUMO

To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.


Assuntos
Nanopartículas , Álcool de Polivinil , Álcool de Polivinil/química , Hidrogéis/química , Alginatos/química , Oligopeptídeos , Celulose/química
5.
Saudi Pharm J ; 31(8): 101671, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37484541

RESUMO

Background & Objectives: This study aimed to create a controlled delivery system for Tapentadol Hydrochloride by developing interpenetrating networks (IPNs) of Natrosol-Pectin copolymerized with Acrylic Acid and Methylene bisacrylamide, and to analyze the effects of various ingredients on the physical and chemical characteristics of the IPNs. Methods: Novel Tapentadol Hydrochloride-loaded Natrosol-Pectin based IPNs were formulated by using the free radical polymerization technique. Co-polymerization of Acrylic Acid (AA) with Natrosol and Pectin was performed by using Methylene bisacrylamide (MBA). Ammonium persulfate (APS) was used as the initiator of crosslinking process. The impact of ingredients i.e. Natrosol, Pectin, MBA, and Acrylic Acid on the gel fraction, porosity, swelling (%), drug loading, and drug release was investigated. FTIR, DSC, TGA, SEM and EDX studies were conducted to confirm the grafting of polymers and to evaluate the thermal stability and surface morphology of the developed IPNs. Results: Swelling studies exhibited an increase in swelling percentage from 84.27 to 91.17% upon increasing polymer (Natrosol and Pectin) contents. An increase in MBA contents resulted in a decrease in swelling from 85 to 67.63%. Moreover, the swelling was also observed to increase with higher AA contents. Significant drug release was noted at higher pH instead of gastric pH value. Oral toxicological studies revealed the nontoxic and biocompatible nature of Natrosol-Pectin IPNs. Interpretation & Conclusion: The developed IPNs were found to be an excellent system for the controlled delivery of Tapentadol Hydrochloride.

6.
Mater Sci Eng R Rep ; 1462021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34483486

RESUMO

Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.

7.
Chemistry ; 27(28): 7773-7780, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33780578

RESUMO

Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm-1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+ /Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4 /SNP/Li) exhibit good cycling stability and rate capability at room temperature.

8.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919275

RESUMO

Three polymers with excellent absorption properties were synthesized by graft polymerization: soluble starch-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid). Ammonium persulfate and potassium persulfate were used as initiators, while N,N'-methylenebisacrylamide was used as the crosslinking agent. The molecular structure of potato and soluble starch grafted by synthetic polymers was characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the resulting materials was studied using a scanning electron microscope (SEM). Thermal stability was tested by thermogravimetric measurements. The absorption properties of the obtained biopolymers were tested in deionized water, sodium chroma solutions of various concentrations and in buffer solutions of various pH.


Assuntos
Hidrogéis/síntese química , Polímeros/síntese química , Acrilamida/química , Acrilatos/química , Hidrogéis/química , Metacrilatos/química , Microscopia Eletrônica de Varredura , Polímeros/química , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Ácidos Sulfônicos/química , Termogravimetria
9.
Pharm Res ; 37(11): 220, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051728

RESUMO

PURPOSE: Gold porphyrin (AuP) is a complex that has been shown to be potent against various tumors. A biocompatible interpenetrating network (IPN) system comprised of polyethyleneglycol diacrylate (PEGdA) and chemically-modified gelatin has been shown to be an effective implantable drug depot to deliver AuP locally. Here we designed IPN microparticles complexed with AuP to facilitate intravenous administration and to diminish systemic toxicity. METHODS: We have synthesized and optimized an IPN microparticle formulation complexed with AuP. Tumor cell cytotoxicity, antitumor activity, and survival rate in lung cancer bearing nude mice were analyzed. RESULTS: IPN microparticles maintained AuP bioactivity against lung cancer cells (NCI-H460). In vivo study showed no observable systemic toxicity in nude mice bearing NCI-H460 xenografts after intravenous injection of 6 mg/kg AuP formulated with IPN microparticles. An anti-tumor activity level comparable to free AuP was maintained. Mice treated with 6 mg/kg AuP in IPN microparticles showed 100% survival rate while the survival rate of mice treated with free AuP was much less. Furthermore, microparticle-formulated AuP significantly reduced the intratumoral microvasculature when compared with the control. CONCLUSION: AuP in IPN microparticles can reduce the systemic toxicity of AuP without compromising its antitumor activity. This work highlighted the potential application of AuP in IPN microparticles for anticancer chemotherapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Ouro/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Metaloporfirinas/farmacologia , Administração Intravenosa , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Linhagem Celular Tumoral , Composição de Medicamentos , Ouro/administração & dosagem , Ouro/química , Humanos , Neoplasias Pulmonares/patologia , Metaloporfirinas/administração & dosagem , Metaloporfirinas/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Small ; 15(27): e1901406, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31025545

RESUMO

Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.


Assuntos
Argila/química , Condutividade Elétrica , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Nanopartículas/química , Resinas Acrílicas/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Adesão Celular , Humanos , Polimerização , Polímeros/química , Silicatos/química
11.
Pharm Res ; 36(4): 61, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850894

RESUMO

PURPOSE: Interpenetrating network system (IPN), consisting of polyethylene glycol (PEG) -diacrylate (PEGdA) and modified gelatin, is a biocompatible and biodegradable hydrogel and has been studied for the local delivery of bioactive molecules and drugs. Gold(III) porphyrin(AuP) is a stable metal compound in the development for anticancer application when administered systemically. The aim of this work is to develop a novel formulation for AuP based on IPN for local delivery. METHODS: IPN loaded with AuP hydrogel was optimized and synthesized. Drug release kinetics, cytotoxicity against tumor cells, and antitumor activity in lung cancer bearing nude mice were studied. RESULTS: AuP released from the IPN followed a first order kinetics in vitro. The AuP loaded IPN showed higher cytotoxicity against human lung cancer cell lines compared to IPN only. In mice bearing human lung cancer xenograft, AuP loaded IPN inhibited tumor growth and reduced angiogenesis. No sign of systemic toxicity was observed for all treatment groups. CONCLUSION: AuP loaded IPN provides an improved formulation over systemic delivery for tumor inhibition to complement surgical intervention. Graphical Abstract Injectable multifunctional matrix of polyethylene glycol and gelatin derivatives for the delivery of gold porphyrinto inhibit tumor growth.


Assuntos
Compostos de Ouro/farmacologia , Xenoenxertos/efeitos dos fármacos , Hidrogéis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Polietilenoglicóis/química , Transplante Heterólogo/métodos
12.
Heliyon ; 10(13): e33574, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040369

RESUMO

Enamel is composed of numerous uniformly wide, well-oriented hydroxyapatite crystals. It possesses an acellular structure that cannot be repaired after undergoing damage. Therefore, remineralization after enamel defects has become a focal point of research. Hydrogels, which are materials with three-dimensional structures derived from cross-linking polymers, have garnered significant attention in recent studies. Their exceptional properties make them valuable in the application of enamel remineralization. In this review, we summarize the structure and formation of enamel, present the design considerations of hydrogels for enamel remineralization, explore diverse hydrogels types in this context, and finally, shed light on the potential future applications in this field.

13.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065367

RESUMO

Significant developments have been achieved with the invention of hydrogels. They are effective in many fields such as wastewater treatment, food, agriculture, pharmaceutical applications, and drug delivery. Although hydrogels have been used successfully in these areas, there is a need to make them better for future applications. Interpenetrating polymer networks (IPNs) can be created to make hydrogels more adjustable and suitable for a specific purpose. IPN formation is an innovative approach for polymeric systems. It brings two or more polymer networks together with entanglements. The properties of IPNs are controlled by its chemistry, crosslinking density, and morphology. Therefore, it is necessary to understand characterization methods in order to detect the formation of IPN structure and to develop the properties of hydrogels. In recent studies, IPN structure in hydrogels has been determined via chemical, physical, and mechanical methods such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and rheology methods. In this paper, these characterization methods will be explained, recent studies will be scrutinized, and the effectiveness of these methods to confirm IPN formation will be evaluated.

14.
Acta Biomater ; 187: 242-252, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218279

RESUMO

The extracellular matrix protein collagen I has been used extensively in the field of biomaterials due to its inherent biocompatibility and unique viscoelastic and mechanical properties. Collagen I self-assembly into fibers and networks is environmentally sensitive to gelation conditions such as temperature, resulting in gels with distinct network architectures and mechanical properties. Despite this, collagen gels are not suitable for many applications given their relatively low storage modulus. We have prepared collagen-poly(ethylene glycol) [PEG] interpenetrating network (IPN) hydrogels to reinforce the collagen network, which also induces changes to network plasticity, a recent focus of study in cell-matrix interactions. Here, we prepare collagen/PEG IPNs, varying collagen concentration and collagen gelation temperature to assess changes in microarchitecture and mechanical properties of these networks. By tuning these parameters, IPNs with a range of stiffness, plasticity and pore size are obtained. Cell studies suggest that matrix plasticity is a key determinant of cell behavior, including cell elongation, on these gels. This work presents a natural/synthetic biocompatible matrix that retains the unique structural properties of collagen networks with increased storage modulus and tunable plasticity. The described IPN materials will be of use for applications in which control of cell spreading is desirable, as only minimal changes in sample preparation lead to changes in cell spreading and circularity. Additionally, this study contributes to our understanding of the connection between collagen self-assembly conditions and matrix structural and mechanical properties and presents them as useful tools for the design of other collagen based biomaterials. STATEMENT OF SIGNIFICANCE: We developed a collagen-poly(ethylene glycol) interpenetrating network (IPN) platform that retains native collagen architecture and biocompatibility but provides higher stiffness and tunable plasticity. With minor changes in collagen gelation temperature or concentration, IPN gels with a range of plasticity, storage modulus, and pore size can be obtained. The tunable plasticity of the gels is shown to modulate cell spreading, with a greater proportion of elongated cells on the most plastic of IPNs, supporting the assertion that matrix plasticity is a key determinant of cell spreading. The material can be of use for situations where control of cell spreading is desired with minimal intervention, and the findings herein may be used to develop similar collagen based IPN platforms.


Assuntos
Colágeno , Polietilenoglicóis , Polietilenoglicóis/química , Colágeno/química , Animais , Hidrogéis/química , Humanos , Movimento Celular/efeitos dos fármacos
15.
Int J Biol Macromol ; 267(Pt 2): 131519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608985

RESUMO

Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.


Assuntos
Materiais Biocompatíveis , Parafusos Ósseos , Quitosana , Fibroínas , Células Endoteliais da Veia Umbilical Humana , Teste de Materiais , Quitosana/química , Quitosana/farmacologia , Fibroínas/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hidrogéis/química , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Força Compressiva , Módulo de Elasticidade
16.
Int J Biol Macromol ; 268(Pt 2): 131735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653424

RESUMO

The CMC-PNIPAM hydrogel with semi-interpenetrating structure and temperature-sensitivity was prepared by in-situ polymerization of N-isopropylacrylamide (NIPAM) in sodium carboxymethylcellulose (CMC) solution at room temperature. The mass ratio of CMC to NIPAM was a key factor influencing the network structure and property of CMC-PNIPAM hydrogel. The low critical phase transition temperature (LCST) of CMC-PNIPAM hydrogels increased from 34.4 °C to 35.8 °C with the mass ratio of CMC to NIPAM rising from 0 to 1.2. The maximum compressive stress of CMC-PNIPAM hydrogel reached to 26.7 kPa and the relaxation elasticity was 52 % at strain of 60 %. The viscoelasticity of CMC-PNIPAM hydrogel was consistent with the generalized Maxwell model. The maximum swelling ratio in deionized water was 170.25 g·g-1 (dried hydrogel) with swelling rate of 2.57 g·g-1·min-1 at 25 °C. CMC-PNIPAM hydrogel hardly absorbed water above LCST, but the swollen hydrogel could release water at the rate of 0.36 g·g-1·min-1 once exceeding LCST. The test of water retention showed that soil mixed with 2 wt% dried CMC-PNIPAM hydrogel could retain 13.08 wt% water after 30 days at 25 °C that was 4.4 times than that of controlled soil without CMC-PNIPAM hydrogel. The semi-interpenetrating CMC-PNIPAM hydrogel showed a potential to conserve water responding to temperature.


Assuntos
Resinas Acrílicas , Carboximetilcelulose Sódica , Hidrogéis , Temperatura , Água , Resinas Acrílicas/química , Água/química , Hidrogéis/química , Carboximetilcelulose Sódica/química , Transição de Fase , Viscosidade , Acrilamidas/química
17.
Int J Biol Macromol ; 277(Pt 3): 134340, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094889

RESUMO

Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.


Assuntos
Quitosana , Hidrogéis , Azul de Metileno , Amido , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Azul de Metileno/química , Amido/química , Adsorção , Hidrogéis/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Água/química , Cinética , Temperatura
18.
Int J Biol Macromol ; 276(Pt 1): 133760, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013510

RESUMO

The concentration of urea in sweat serves as a valuable indicator of an individual's overall health. In this study, we present a novel hydrogel sensor (BAF-CPu), based on cellulose nanofiber and polyvinyl alcohol, designed to achieve non-invasive in situ and highly sensitive detection of urea in sweat by combining the dual-mode response of colorimetric and ratiometric fluorescence techniques. The bright red fluorescent gold­copper bimetallic nanoclusters and green fluorescent fluorescein isothiocyanate-modified cellulose nanofibers endowed BAF-CPu with proportional fluorescence responsive properties. Under the catalytic action of urease, the hydrolysis of urea raises the pH, resulting in diminished red fluorescence along with enhanced green fluorescence, and the fluorescence color of BAF-CPu changes from red to green. Moreover, BAF-CPu hydrogel encapsulates pH-responsive bromothymol blue (BTB), which changes from yellow to blue in the presence of urea. Importantly, BAF-CPu absorbs sweat by adhering directly to the skin surface, avoiding the complicated sampling process and improving the maneuverability of the detection process. With both ratiometric fluorescence and colorimetric modes, BAF-CPu is not only able to detect sweat in situ, but also can reduce the interference of the complex sweat environment on the urea detection, and realize the high sensitivity detection of urea in sweat.


Assuntos
Celulose , Colorimetria , Hidrogéis , Nanofibras , Álcool de Polivinil , Suor , Ureia , Nanofibras/química , Celulose/química , Ureia/química , Ureia/análise , Colorimetria/métodos , Suor/química , Álcool de Polivinil/química , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Técnicas Biossensoriais/métodos , Fluorescência
19.
J Colloid Interface Sci ; 678(Pt A): 827-841, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39217698

RESUMO

Herein, an interpenetrating network hydrogel (IPN-Gel) based on cellulose and chitosan was synthesized via simultaneous amino-anhydride and azide-alkyne click reaction in water in one pot. The samples were characterized by various analytical methods including FTIR, SEM, XRD, XPS, 1H NMR and so forth. The fabrication conditions were optimized by single factor experiments with water uptake (WU) and gel mass fraction (GMF) as two indexes. The WU and GMF of the IPN-Gel prepared under optimized conditions were 1192.37 % and 74.00 %, respectively. Its WU descended with the ascension in temperature, and first descended and then gradually ascended with the ascension in pH, confirming that the IPN-Gel had thermal/pH dual responsiveness. Using 5-Fu as a model drug, the release behavior of 5-Fu in IPN-Gel was explored. Its release behavior could be regulated by changing temperature and pH values, and it followed the Korsmeyer Peppas model. The viability of 4 T1 cells and HUVEC cells exceeded 80 % after 48 h of incubation at a high concentration of 200 µg/mL IPN-Gel, and hemolytic percentage was below the allowed limit of 5 %. The study provides a new strategy for the preparation of the IPN-Gel with biocompatibility, swelling reversibility and controllable drug release.

20.
Sci Rep ; 14(1): 7172, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531891

RESUMO

To address the concern that biodegradable elastomers are environmental-friendly but usually associated with poor properties for practical utilization, we report a star-crosslinked poly(ethylene glycol-glycerol-itaconate-sebacate) (PEGIS) elastomer synthesized by esterification, polycondensation and UV curing, and reinforced by bacterial cellulose (BC). The interpenetrating network of primary BC backbone and vulcanized elastomer is achieved by the "in-situ secondary network construction" strategy. With the well dispersion of BC without agglomeration, the mechanical properties of PEGIS are significantly enhanced in tensile strength, Young's modulus and elongation at break. The reinforcement strategy is demonstrated to be efficient and offers a route to the development of biodegradable elastomers for a variety of applications in the future.


Assuntos
Celulose , Decanoatos , Elastômeros , Glicerol/análogos & derivados , Polímeros , Succinatos , Etilenoglicol , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA