Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(2): e2306020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661358

RESUMO

To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.


Assuntos
Compostos Inorgânicos , Nanopartículas , Óxidos , Titânio , Humanos , Feminino , Animais , Caenorhabditis elegans , Peixe-Zebra , Compostos de Cálcio/toxicidade , Nanopartículas/toxicidade
2.
Small ; : e2400013, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433394

RESUMO

Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.

3.
Small ; 20(16): e2300935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009504

RESUMO

The optical properties of lead halide perovskite semiconductors in vicinity of the bandgap are controlled by excitons, so that investigation of their fundamental properties is of critical importance. The exciton Landé or g-factor gX is the key parameter, determining the exciton Zeeman spin splitting in magnetic fields. The exciton, electron, and hole carrier g-factors provide information on the band structure, including its anisotropy, and the parameters contributing to the electron and hole effective masses. Here, gX is measured by reflectivity in magnetic fields up to 60 T for lead halide perovskite crystals. The materials band gap energies at a liquid helium temperature vary widely across the visible spectral range from 1.520 up to 3.213 eV in hybrid organic-inorganic and fully inorganic perovskites with different cations and halogens: FA0.9Cs0.1PbI2.8Br0.2, MAPbI3, FAPbBr3, CsPbBr3, and MAPb(Br0.05Cl0.95)3. The exciton g-factors are found to be nearly constant, ranging from +2.3 to +2.7. Thus, the strong dependences of the electron and hole g-factors on the bandgap roughly compensate each other when combining to the exciton g-factor. The same is true for the anisotropies of the carrier g-factors, resulting in a nearly isotropic exciton g-factor. The experimental data are compared favorably with model calculation results.

4.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558241

RESUMO

The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself. While light propagation is pivotal to optoelectronics and photonics, little is known about this in LHPs in the vicinity of the bandgap where stimulated emission, polariton condensation, superfluorescence, and photon recycling may take place. Here we develop two-dimensional optical Kerr effect (2D-OKE) spectroscopy to energetically dissect broadband light propagation and dispersive nonlinear polarization responses in LHPs. In contrast to earlier interpretations, the below-bandgap OKE responses in both hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites are found to originate from strong hyperpolarizability and highly anisotropic dispersions. In both materials, the nonlinear mixing of anisotropically propagating light fields results in convoluted oscillatory polarization dynamics. Based on a four-wave mixing model, we quantitatively derive dispersion anisotropies, reproduce 2D-OKE frequency correlations, and establish polarization-dressed light propagation in single-crystal LHPs. Moreover, our findings highlight the importance of distinguishing the often-neglected anisotropic light propagation from underlying coherent quasiparticle responses in various forms of ultrafast spectroscopy.

5.
Nano Lett ; 23(4): 1128-1134, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36780509

RESUMO

Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.

6.
Nano Lett ; 23(7): 2615-2622, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36926921

RESUMO

Cesium lead halide perovskite nanocrystals (PNCs) have emerged as a potential next-generation single quantum emitter (QE) material for quantum optics and quantum information science. Optical dephasing processes at cryogenic temperatures are critical to the quality of a QE, making a mechanistic understanding of coherence losses of fundamental interest. We use photon-correlation Fourier spectroscopy (PCFS) to obtain a lower bound to the optical coherence times of single PNCs as a function of temperature. We find that 20 nm CsPbBr3 PNCs emit nearly exclusively into a narrow zero-phonon line from 4 to 13 K. Remarkably, no spectral diffusion is observed at time scales of 10 µs to 5 ms. Our results suggest that exciton dephasing in this temperature range is dominated by elastic scattering from phonon modes with characteristic frequencies of 1-3 meV, while inelastic scattering is minimal due to weak exciton-phonon coupling.

7.
Nanotechnology ; 34(41)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37356434

RESUMO

Lead-halide perovskites have come to dominate the emerging photovoltaics research scene over the past decade. But whilst perovskite photovoltaics exhibit exceptional efficiencies, their limited stability, as well as the toxicity of their lead component remain challenges. This focus collection captures a snapshot of the efforts in the community to address these challenges, from modifications to the synthesis and device structure of perovskite photovoltaics to improve their stability, through to efforts to understand, develop, and improve lead-free perovskite-inspired materials (PIMs). PIMs range from direct perovskite-derivatives (e.g. CsSnI3or halide elpasolites) through to electronic analogs (e.g. BiOI). The collection discusses the application of these materials not only for solar cells, but also more broadly for photodetection, light emission, and anti-counterfeiting devices. This collection emphasizes the diversity of strategies and directions in this field, as well as its highly interdisciplinary nature.

8.
Nano Lett ; 22(3): 1067-1074, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044784

RESUMO

Describing the nanoscale charge carrier transport at surfaces and interfaces is fundamental for designing high-performance optoelectronic devices. To achieve this, we employ time- and angle-resolved photoelectron spectroscopy with ultraviolet pump and extreme ultraviolet probe pulses. The resulting high surface sensitivity reveals an ultrafast carrier population decay associated with surface-to-bulk transport, which was tracked with a sub-nanometer spatial resolution normal to the surface, and on a femtosecond time scale, in the case of the inorganic CsPbBr3 lead halide perovskite. The decay time exhibits a pronounced carrier density dependence, which is attributed via modeling to enhanced diffusive transport and concurrent recombination. The transport is found to approach an ordinary diffusive regime, limited by electron-hole scattering, at the highest excitation fluences. This approach constitutes an important milestone in our capability to probe hot-carrier transport at solid interfaces with sub-nanometer resolution in a theoretically and experimentally challenging, yet technologically relevant, high-carrier-density regime.

9.
Angew Chem Int Ed Engl ; 62(12): e202218675, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36656542

RESUMO

The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2 PbBr4-4x I4x (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing.

10.
Angew Chem Int Ed Engl ; 62(22): e202302852, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971018

RESUMO

Although α-CsPbI3 is regarded as an attractive optical luminophore, it is readily degraded to the optically inactive δ-phase under ambient conditions. Here, we present a simple approach to revive degraded ("optically sick") α-CsPbI3 through "medication" with thiol-containing ligands. The effect of different types of thiols is systematically studied through optical spectroscopy. The structural reconstruction of degraded α-CsPbI3 nanocrystals to cubic crystals in the presence of thiol-containing ligands is visualized through high-resolution transmission electron microscopy and supported by X-ray diffraction analysis. We found that 1-dodecanethiol (DSH) effectively revives degraded CsPbI3 and results in high immunity towards moisture and oxygen, hitherto unreported. DSH facilitates the passivation of surface defects and etching of degraded Cs4 PbI6 phase, thus reverting them back to the cubic CsPbI3 phase, leading to enhanced PL and environmental stability.

11.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365851

RESUMO

Two-dimensional (2D) perovskite have been widely researched for solar cells, light-emitting diodes, photodetectors because of their excellent environmental stability and optoelectronic properties in comparison to three-dimensional (3D) perovskite. In this study, we demonstrate the high response of 2D-(PEA)2PbBr4 perovskite of the horizontal vapor sensor was outstandingly more superior than 3D-MAPbBr3 perovskite. 2D transverse perovskite layer have the large surface-to-volume ratio and reactive surface, with the charge transfer mechanism, which was suitable for vapor sensing and trapping. Thus, 2D perovskite vapor sensors demonstrate the champion current response ratio R of 107.32 under the ethanol vapors, which was much faster than 3D perovskite (R = 2.92).

12.
Nano Lett ; 21(13): 5564-5571, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181431

RESUMO

Flexible semiconductor materials, where structural fluctuations and transformation are tolerable and have low impact on electronic properties, focus interest for future applications. Two-dimensional thin layer lead halide perovskites are hailed for their unconventional optoelectronic features. We report structural deformations via thin layer buckling in colloidal CsPbBr3 nanobelts adsorbed on carbon substrates. The microstructure of buckled nanobelts is determined using transmission electron microscopy and atomic force microscopy. We measured significant decrease in emission from the buckled nanobelt using cathodoluminescence, marking the influence of such mechanical deformations on electronic properties. By employing plate buckling theory, we approximate adhesion forces between the buckled nanobelt and the substrate to be Fadhesion ∼ 0.12 µN, marking a limit to sustain such deformation. This work highlights detrimental effects of mechanical buckling on electronic properties in halide perovskite nanostructures and points toward the capillary action that should be minimized in fabrication of future devices and heterostructures based on nanoperovskites.

13.
Nano Lett ; 21(24): 10230-10237, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34859670

RESUMO

Herein, we demonstrate a highly tunable enhancement and switching of nonlinear emission from all-inorganic metal halide perovskites based on an asymmetrically biased metal-insulator-semiconductor (MIS) structure. We achieve 2 orders of magnitude enhancement of the two-photon-pumped photoluminescence (TPL) from CsPbBr3 microplates with the MIS structure, due to comprehensive effects including localized field effect, trap-filling effect, and collection enhancement. In particular, taking advantage of electric-field-induced passivation/activation of Br vacancies, we realize highly tunable TPL enhancement, ranging from ∼61.2-fold to ∼370.3-fold. Moreover, we demonstrate an efficient modulation of the two-photon-pumped lasing from the MIS structure, which exhibits electric field induced switching with a high on/off ratio of 67:1. This work has opened new avenues for steering carrier transport and nonlinear emission in lead halide perovskites, which shows great promise for realizing high-efficiency and tunable nonlinear nanophotonic devices.

14.
Molecules ; 27(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807506

RESUMO

Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.

15.
Chimia (Aarau) ; 76(6): 552-557, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069725

RESUMO

Charge transfer and subsequent separation into free carriers are key processes that govern the efficiencies of third generation solar cell technologies based on donor-acceptor heterojunctions. As these processes typically occur on picosecond to femtosecond timescales, it is necessary to employ ultrafast spectroscopic techniques to further our understanding of these processes in order to provide vital information that can aide in furthering material design. Within the framework of the National Centre of Competence in Research "Molecular Ultrafast Science and Technology" (NCCR MUST), we have developed and utilized a suite of different ultrafast spectroscopic techniques to study charge generation, separation and recombination in a variety of small molecule based organic solar cells and lead halide perovskites. Here, we provide an overview of the main techniques used in our laboratory and the recent results obtained using these spectroscopic techniques.

16.
Nanotechnology ; 32(23)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33621960

RESUMO

Herein, a new kind of lead halide perovskite (LHP, (C12H25NH3)2PbI4) with aggregation-induced emission (AIE) feature is developed as a fluorescent probe for heparin (Hep). The LHPs exhibit high emission when they aggregate in water. Interestingly, a few picomoles of dispersed gold nanoparticles (AuNPs) can quench the emission of LHPs, but the aggregated AuNPs are invalid. When protamine (Pro) is mixed with AuNPs at first, the negatively charged AuNPs aggregate through electrostatic interaction, producing the AIE recovery. Nevertheless, Hep disturbs the interaction between AuNPs and Pro due to its strong electrostatic interaction with Pro. Therefore, the dispersed AuNPs quench the fluorescence of LHPs again. A response linear range of Hep of 0.8-4.2 ng ml-1is obtained, and the detection limit is 0.29 ng ml-1. Compared with other probes for determination of Hep with AuNPs, this strategy exhibits better sensitivity due to the small quantity of AuNPs used. Finally, it is also successfully applied to detect Hep in human serum samples with satisfactory recoveries.


Assuntos
Ouro , Nanopartículas Metálicas , Compostos de Cálcio , Heparina , Humanos , Limite de Detecção , Óxidos , Titânio
17.
Nano Lett ; 20(7): 5141-5148, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459491

RESUMO

The fast-growing field of atomically thin semiconductors urges a new understanding of two-dimensional excitons, which entirely determine their optical responses. Here, taking layered lead halide perovskites as an example of unconventional two-dimensional semiconductors, by means of versatile optical spectroscopy measurements, we resolve fine-structure splitting of bright excitons of up to ∼2 meV, which is among the largest values in two-dimensional semiconducting systems. The large fine-structure splitting is attributed to the strong electron-hole exchange interaction in layered perovskites, which is proven by the optical emission in high magnetic fields of up to 30 T. Furthermore, we determine the g-factors for these bright excitons as ∼+1.8. Our findings suggest layered lead halide perovskites are an ideal platform for studying exciton spin-physics in atomically thin semiconductors that will pave the way toward exciton manipulation for novel device applications.

18.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946624

RESUMO

Solution methods remain the most popular means for the fabrication of hybrid halide perovskites. However, the solubility of hybrid perovskites has not yet been quantitively investigated. In this study, we present accurate solubility data for MAPbI3, FAPbI3, MAPbBr3 and FAPbBr3 in the two most widely used solvents, DMF and DMSO, and demonstrate huge differences in the solubility behavior depending on the solution compositions. By analyzing the donor numbers of the solvents and halide anions, we rationalize the differences in the solubility behavior of hybrid perovskites with various compositions, in order to take a step forward in the search for better processing conditions of hybrid perovskites for solar cells and optoelectronics.

19.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572957

RESUMO

Lead halide perovskites are currently widely investigated as active materials in photonic and optoelectronic devices. While the lack of long term stability actually limits their application to commercial devices, several experiments demonstrated that beyond the irreversible variation of the material properties due to degradation, several possibilities exist to reversibly modulate the perovskite characteristics by acting on the environmental conditions. These results clear the way to possible applications of lead halide perovskites to resistive and optical sensors. In this review we will describe the current state of the art of the comprehension of the environmental effects on the optical and electronic properties of lead halide perovskites, and of the exploitation of these results for the development of perovskite-based sensors.


Assuntos
Técnicas Biossensoriais , Compostos de Cálcio/química , Chumbo/química , Óptica e Fotônica/métodos , Óxidos/química , Titânio/química , Clima , Eletrônica , Monitoramento Ambiental , Humanos , Compostos Inorgânicos/química , Compostos Inorgânicos/isolamento & purificação , Chumbo/isolamento & purificação
20.
J Environ Sci (China) ; 104: 399-414, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985742

RESUMO

Lead halide perovskites MAPbX3 (MA = CH3NH3 or Cs; X = I, Br, Cl) are well considered to be potential candidates for photocatalytic reaction due to its excellent photoelectrical properties, but they still suffer from the low charge separation efficiency and slow catalytic reaction dynamics. To tackle the drawbacks, herein, MAPbBr3/carbon sphere (CS) composite photocatalysts using glucose as the carbon source were elaborately designed and fabricated via a dry mechanochemical grinding process. The interfacial interaction Pb-O-C chemical bonds were constructed between MAPbBr3 and the carbon sphere surface containing organic functional groups. By optimizing the content of CSs, the enhanced photocatalytic degradation kinetic rate of Malachite Green (MG) pollutants (92% within 20 min) for MAPbBr3/CSx (x = 17 wt.%) is about 3.6-fold of that for pristine MAPbBr3, which is attributed to the corporative adsorption and enhanced carrier transportation and separation of MAPbBr3/CSx. Furthermore, the possible degradation mechanism was proposed on basis of the electrochemical, mass spectrometry and optical characterization results. Owing to the robust interfacial interaction, effective electron extraction rate (ket = 4.6 × 107 sec-1) from MAPbBr3 to CS can be established, which driven oxygen activation where superoxide radicals (•O2-) played an important role in MG degradation. It is expected that mechanochemistry strategy may provide a new route to design efficient lead halide perovskite-carbon or metal oxide or sulfide composite photocatalysts.


Assuntos
Poluentes Ambientais , Superóxidos , Adsorção , Carbono , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA