Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 224: 10-20, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295893

RESUMO

AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Espectroscopia de Ressonância Magnética/métodos
2.
J Struct Biol ; 216(2): 108067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367824

RESUMO

Cellular cryo-electron tomography (cryo-ET) has emerged as a key method to unravel the spatial and structural complexity of cells in their near-native state at unprecedented molecular resolution. To enable quantitative analysis of the complex shapes and morphologies of lipid membranes, the noisy three-dimensional (3D) volumes must be segmented. Despite recent advances, this task often requires considerable user intervention to curate the resulting segmentations. Here, we present ColabSeg, a Python-based tool for processing, visualizing, editing, and fitting membrane segmentations from cryo-ET data for downstream analysis. ColabSeg makes many well-established algorithms for point-cloud processing easily available to the broad community of structural biologists for applications in cryo-ET through its graphical user interface (GUI). We demonstrate the usefulness of the tool with a range of use cases and biological examples. Finally, for a large Mycoplasma pneumoniae dataset of 50 tomograms, we show how ColabSeg enables high-throughput membrane segmentation, which can be used as valuable training data for fully automated convolutional neural network (CNN)-based segmentation.


Assuntos
Algoritmos , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Software , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Membrana Celular/ultraestrutura , Mycoplasma pneumoniae/ultraestrutura , Interface Usuário-Computador , Imageamento Tridimensional/métodos
3.
Small ; 20(30): e2309496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402437

RESUMO

Photocatalytic nanoparticles offer antimicrobial effects under illumination due to the formation of reactive oxygen species (ROS), capable of degrading bacterial membranes. ROS may, however, also degrade human cell membranes and trigger toxicity. Since antimicrobial peptides (AMPs) may display excellent selectivity between human cells and bacteria, these may offer opportunities to effectively "target" nanoparticles to bacterial membranes for increased selectivity. Investigating this, photocatalytic TiO2 nanoparticles (NPs) are coated with the AMP LL-37, and ROS generation is found by C11-BODIPY to be essentially unaffected after AMP coating. Furthermore, peptide-coated TiO2 NPs retain their positive ζ-potential also after 1-2 h of UV illumination, showing peptide degradation to be sufficiently limited to allow peptide-mediated targeting. In line with this, quartz crystal microbalance measurements show peptide coating to promote membrane binding of TiO2 NPs, particularly so for bacteria-like anionic and cholesterol-void membranes. As a result, membrane degradation during illumination is strongly promoted for such membranes, but not so for mammalian-like membranes. The mechanisms of these effects are elucidated by neutron reflectometry. Analogously, LL-37 coating promoted membrane rupture by TiO2 NPs for Gram-negative and Gram-positive bacteria, but not for human monocytes. These findings demonstrate that AMP coating may selectively boost the antimicrobial effects of photocatalytic NPs.


Assuntos
Membrana Celular , Nanopartículas , Titânio , Titânio/química , Titânio/farmacologia , Humanos , Catálise , Nanopartículas/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Técnicas de Microbalança de Cristal de Quartzo
4.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353515

RESUMO

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Assuntos
Mitocôndrias Hepáticas , Fósforo , Animais , Mitocôndrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Brometos/metabolismo , Metilação , Bicamadas Lipídicas/metabolismo , Mamíferos
5.
Arch Biochem Biophys ; 758: 110080, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960345

RESUMO

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.


Assuntos
Antivirais , Ácido Glicirrízico , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , SARS-CoV-2 , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Humanos , Domínios Proteicos , Tratamento Farmacológico da COVID-19
6.
Cryobiology ; 115: 104898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663665

RESUMO

Trehalose is widely acknowledged for its ability to stabilize plasma membranes during dehydration. However, the exact mechanism by which trehalose interacts with lipid bilayers remains presently unclear. In this study, we conducted atomistic molecular dynamic simulations on asymmetric model bilayers that mimic the membrane of human red blood cells at various trehalose and water contents. We considered three different hydration levels mimicking the full hydration to desiccation scenarios. Results indicate that the asymmetric distribution of lipids did not significantly influence the computed structural characteristics at full and low hydration. At dehydration, however, the order parameter obtained from the symmetric bilayer is significantly higher compared to those obtained from asymmetric ones. Analysis of hydrogen bonds revealed that the protective ability of trehalose is well described by the water replacement hypothesis at full and low hydration, while at dehydration other interaction mechanisms associated with trehalose exclusion from the bilayer may involve. In addition, we found that trehalose exclusion is not attributed to sugar saturation but rather to the reduction in hydration levels. It can be concluded that the protective effect of trehalose is not only related to the hydration level of the bilayer, but also closely tied to the asymmetric distribution of lipids within each leaflet.


Assuntos
Membrana Eritrocítica , Ligação de Hidrogênio , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Trealose , Trealose/metabolismo , Trealose/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Humanos , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/química , Água/química , Água/metabolismo , Eritrócitos/metabolismo , Eritrócitos/química , Dessecação
7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33674387

RESUMO

Lipid droplets (LDs) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyze LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here, we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG, as well as its precursor diacylglycerol, inside its unconventional ring-like oligomeric structure and that both its luminal and transmembrane regions contribute to this process. This mechanism is abolished upon mutations of polar residues involved in protein-TG interactions into hydrophobic residues. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis.


Assuntos
Diglicerídeos , Subunidades gama da Proteína de Ligação ao GTP , Gotículas Lipídicas , Simulação de Dinâmica Molecular , Triglicerídeos , Linhagem Celular , Diglicerídeos/química , Diglicerídeos/genética , Diglicerídeos/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Triglicerídeos/química , Triglicerídeos/genética , Triglicerídeos/metabolismo
8.
Nano Lett ; 23(10): 4267-4273, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37141427

RESUMO

Endocytosis is a key cellular process involved in the uptake of nutrients, pathogens, or the therapy of diseases. Most studies have focused on spherical objects, whereas biologically relevant shapes can be highly anisotropic. In this letter, we use an experimental model system based on Giant Unilamellar Vesicles (GUVs) and dumbbell-shaped colloidal particles to mimic and investigate the first stage of the passive endocytic process: engulfment of an anisotropic object by the membrane. Our model has specific ligand-receptor interactions realized by mobile receptors on the vesicles and immobile ligands on the particles. Through a series of experiments, theory, and molecular dynamics simulations, we quantify the wrapping process of anisotropic dumbbells by GUVs and identify distinct stages of the wrapping pathway. We find that the strong curvature variation in the neck of the dumbbell as well as membrane tension are crucial in determining both the speed of wrapping and the final states.

9.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396879

RESUMO

Using the gramicidin A channel as a molecular probe, we show that tubulin binding to planar lipid membranes changes the channel kinetics-seen as an increase in the lifetime of the channel dimer-and thus points towards modification of the membrane's mechanical properties. The effect is more pronounced in the presence of non-lamellar lipids in the lipid mixture used for membrane formation. To interpret these findings, we propose that tubulin binding redistributes the lateral pressure of lipid packing along the membrane depth, making it closer to the profile expected for lamellar lipids. This redistribution happens because tubulin perturbs the lipid headgroup spacing to reach the membrane's hydrophobic core via its amphiphilic α-helical domain. Specifically, it increases the forces of repulsion between the lipid headgroups and reduces such forces in the hydrophobic region. We suggest that the effect is reciprocal, meaning that alterations in lipid bilayer mechanics caused by membrane remodeling during cell proliferation in disease and development may also modulate tubulin membrane binding, thus exerting regulatory functions. One of those functions includes the regulation of protein-protein interactions at the membrane surface, as exemplified by VDAC complexation with tubulin.


Assuntos
Bicamadas Lipídicas , Tubulina (Proteína) , Bicamadas Lipídicas/química , Tubulina (Proteína)/metabolismo , Gramicidina/química
10.
Angew Chem Int Ed Engl ; 63(6): e202311233, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37856157

RESUMO

The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.


Assuntos
Corantes Fluorescentes , Sondas Moleculares , Viscosidade , Corantes Fluorescentes/química , Sondas Moleculares/química , Conformação Molecular , Proteínas
11.
J Bacteriol ; 205(1): e0031522, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36541812

RESUMO

Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.


Assuntos
Bacteriocinas , Bicamadas Lipídicas , Bicamadas Lipídicas/metabolismo , Cloreto de Sódio/metabolismo , Membrana Celular/metabolismo , Bacteriocinas/metabolismo , Enterobacteriaceae
12.
Small ; 19(3): e2204428, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417574

RESUMO

Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bactérias , Simulação de Dinâmica Molecular
13.
J Membr Biol ; 256(4-6): 423-431, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728833

RESUMO

In this study a lipid bilayer membrane model was used in which the bilayer is tethered to a solid substrate with molecular tethers. Voltage-current (V-I) measurements of the tethered bilayer membranes (tBLM) and tBLM with benzyl alcohol (BZA) incorporated in their structures, were measured using triangular voltage ramps of 0-500 mV. The temperature dependence of the conductance deduced from the V-I measurements are described. An evaluation of the activation energies for electrical conductance showed that BZA decreased the activation/ Born energies for ionic conduction of tethered lipid membranes. It is concluded that BZA increased the average pore radius of the tBLM.


Assuntos
Álcool Benzílico , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Álcool Benzílico/farmacologia
14.
Proc Natl Acad Sci U S A ; 117(3): 1788-1798, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31911476

RESUMO

The lipid dependence of the nicotinic acetylcholine receptor from the Torpedo electric organ has long been recognized, and one of the most consistent experimental observations is that, when reconstituted in membranes formed by zwitterionic phospholipids alone, exposure to agonist fails to elicit ion-flux activity. More recently, it has been suggested that the bacterial homolog ELIC (Erwinia chrysanthemi ligand-gated ion channel) has a similar lipid sensitivity. As a first step toward the elucidation of the structural basis of this phenomenon, we solved the structures of ELIC embedded in palmitoyl-oleoyl-phosphatidylcholine- (POPC-) only nanodiscs in both the unliganded (4.1-Å resolution) and agonist-bound (3.3 Å) states using single-particle cryoelectron microscopy. Comparison of the two structural models revealed that the largest differences occur at the level of loop C-at the agonist-binding sites-and the loops at the interface between the extracellular and transmembrane domains (ECD and TMD, respectively). On the other hand, the transmembrane pore is occluded in a remarkably similar manner in both structures. A straightforward interpretation of these findings is that POPC-only membranes frustrate the ECD-TMD coupling in such a way that the "conformational wave" of liganded-receptor gating takes place in the ECD and the interfacial M2-M3 linker but fails to penetrate the membrane and propagate into the TMD. Furthermore, analysis of the structural models and molecular simulations suggested that the higher affinity for agonists characteristic of the open- and desensitized-channel conformations results, at least in part, from the tighter confinement of the ligand to its binding site; this limits the ligand's fluctuations, and thus delays its escape into bulk solvent.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Animais , Sítios de Ligação , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios Proteicos , Receptores Nicotínicos/metabolismo , Torpedo
15.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903487

RESUMO

Fluorescence probes are indispensable tools in biochemical and biophysical membrane studies. Most of them possess extrinsic fluorophores, which often constitute a source of uncertainty and potential perturbation to the host system. In this regard, the few available intrinsically fluorescent membrane probes acquire increased importance. Among them, cis- and trans-parinaric acids (c-PnA and t-PnA, respectively) stand out as probes of membrane order and dynamics. These two compounds are long-chained fatty acids, differing solely in the configurations of two double bonds of their conjugated tetraene fluorophore. In this work, we employed all-atom and coarse-grained molecular dynamics simulations to study the behavior of c-PnA and t-PnA in lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), representative of the liquid disordered and solid ordered lipid phases, respectively. All-atom simulations indicate that the two probes show similar location and orientation in the simulated systems, with the carboxylate facing the water/lipid interface and the tail spanning the membrane leaflet. The two probes establish interactions with the solvent and lipids to a similar degree in POPC. However, the almost linear t-PnA molecules have tighter lipid packing around them, especially in DPPC, where they also interact more with positively charged lipid choline groups. Probably for these reasons, while both probes show similar partition (assessed from computed free energy profiles across bilayers) to POPC, t-PnA clearly partitions more extensively than c-PnA to the gel phase. t-PnA also displays more hindered fluorophore rotation, especially in DPPC. Our results agree very well with experimental fluorescence data from the literature and allow deeper understanding of the behavior of these two reporters of membrane organization.


Assuntos
Corantes Fluorescentes , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Corantes Fluorescentes/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química
16.
Med Res Rev ; 42(2): 983-1018, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719798

RESUMO

Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.


Assuntos
Lipidômica , Neoplasias , Humanos , Metabolismo dos Lipídeos , Neoplasias/diagnóstico , Neoplasias/terapia
17.
Small ; 18(51): e2205567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328714

RESUMO

Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas , Proteínas de Membrana/metabolismo , Dispositivos Lab-On-A-Chip
18.
Mol Pharm ; 19(6): 1839-1852, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35559658

RESUMO

Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin-echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST's effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to the relocation and release of cytochrome c. Second, PST has an ordering effect on the lipids and disrupts their distribution within the IMM, which would interfere with the maintenance and functionality of the active forms of proteins in the electron transport chain. These previously unreported findings implicate PST's effect on mitochondrial apoptosis.


Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/química , Apoptose , Isoquinolinas/química , Isoquinolinas/farmacologia , Mitocôndrias
19.
Mol Cell Biochem ; 477(11): 2507-2528, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35595957

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Lipidômica , Medicina de Precisão , Proliferação de Células , Transdução de Sinais , Linhagem Celular Tumoral
20.
Nano Lett ; 21(22): 9789-9796, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767378

RESUMO

DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.


Assuntos
Canais Iônicos , Nanoestruturas , DNA/química , Canais Iônicos/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA