Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioorg Med Chem Lett ; 44: 128108, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991625

RESUMO

We describe our efforts to identify structurally diverse leads in the triazole-containing N1-carboline series of bromodomain and extra-terminal inhibitors. Replacement of the N5 "cap" phenyl moiety with various heteroaryls, coupled with additional modifications to the carboline core, provided analogs with similar potency, improved pharmacokinetic properties, and increased solubility compared to our backup lead, BMS-986225 (2). Rapid SAR exploration was enabled by a convergent, synthetic route. These efforts provided a potent BET inhibitor, 3-fluoropyridyl 12, that demonstrated robust efficacy in a multiple myeloma mouse tumor model at 1 mg/kg.


Assuntos
Antineoplásicos/farmacologia , Carbolinas/farmacologia , Desenvolvimento de Medicamentos , Mieloma Múltiplo/dietoterapia , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carbolinas/síntese química , Carbolinas/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Proteínas/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
2.
Bioorg Med Chem Lett ; 51: 128376, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560263

RESUMO

We describe our efforts to introduce structural diversity to a previously described triazole-containing N1-carboline series of bromodomain and extra-terminal (BET) inhibitors. N9 carbolines were designed to retain favorable binding interactions that the N1-carbolines possess. A convergent synthetic route enabled modifications to reduce clearance, enhance physicochemical properties, and improve the overall in vitro profile. This work led to the identification of a potent BET inhibitor, (S)-2-{8-fluoro-5-[(3-fluoropyridin-2-yl)(oxan-4-yl)methyl]-7-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5H-pyrido[3,2-b]indol-3-yl}propan-2-ol (10), a compound with enhanced oral exposure in mice. Subsequent evaluation in a mouse triple-negative breast cancer tumor model revealed efficacy at 4 mg/kg of N9-carboline 10.


Assuntos
Antineoplásicos/farmacologia , Carbolinas/farmacologia , Desenvolvimento de Medicamentos , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Carbolinas/administração & dosagem , Carbolinas/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Estrutura Molecular , Proteínas/metabolismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia
3.
Bioorg Med Chem ; 52: 116504, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34814071

RESUMO

Pantothenate kinase (PANK) is the critical regulator of intracellular levels of coenzyme A and has emerged as an attractive target for treating neurological and metabolic disorders. This report describes the optimization, synthesis, and full structure-activity relationships of a new chemical series of pantothenate competitive PANK inhibitors. Potent drug-like molecules were obtained by optimizing a high throughput screening hit, using lipophilic ligand efficiency (LipE) derived from human PANK3 IC50 values to guide ligand development. X-ray crystal structures of PANK3 with index inhibitors from the optimization were determined to rationalize the emerging structure activity relationships. The analysis revealed a key bidentate hydrogen bonding interaction between pyridazine and R306' as a major contributor to the LipE gain observed in the optimization. A tractable series of PANK3 modulators with nanomolar potency, excellent LipE values, desirable physicochemical properties, and a well-defined structural binding mode was produced from this study.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 26(11): 3006-3015, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655612

RESUMO

The use of composite metrics that normalise biological potency values in relation to markers of physicochemical properties, such as size or lipophilicity, has gained a significant amount of traction with many medicinal chemists in recent years. However, there is no consensus on best practice in the area and their application has attracted some criticism. Here we present our approach to their application in lead optimisation projects, provide an objective discussion of the principles we consider important and illustrate how our use of lipophilic ligand efficiency enabled the progression of a number of our successful drug discovery projects. We derive, from this and some recent literature highlights, a set of heuristic guidelines for lipophilicity based optimisation that we believe are generally applicable across chemical series and protein targets.


Assuntos
Descoberta de Drogas/normas , Ligantes , Lipídeos/química , Solubilidade
5.
Int J Mol Sci ; 17(3): 314, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938528

RESUMO

Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91).


Assuntos
Desenho de Fármacos , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Zinco/metabolismo , Sítio Alostérico/efeitos dos fármacos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Humanos , Ligantes , Metaloproteinase 13 da Matriz/química , Simulação de Acoplamento Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia , Zinco/química
6.
Bioorg Med Chem Lett ; 25(10): 2041-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890801

RESUMO

We have discovered a novel class of heterocyclic sulfonamides that act as antagonists of the S1P1 receptor. While members of this series identified from a high-throughput screen showed promising levels of potency in a cell-based assay measuring the inhibition of receptor internalization, most compounds were excessively lipophilic and contained an oxidation-prone thioether moiety. As a result, such compounds suffered from poor physical properties and metabolic stability, limiting their utility as in vivo probes. By removing the thioether group and systematically developing an understanding of structure-activity relationships and the effects of lipophilicity on potency within this series, we have been able to identify potent compounds with vastly improved physical properties. A representative enantiopure triazole sulfonamide (33) has measurable bioavailability following a low (3mg/kg) oral dose in rat, highlighting an achievement of the early hit-to-lead efforts for this series.


Assuntos
Descoberta de Drogas , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Animais , Compostos Heterocíclicos/química , Ligação Proteica/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química
8.
Bioorg Med Chem ; 21(17): 4951-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891165

RESUMO

Therapeutic intervention with aldose reductase inhibitors appears to be promising for major pathological conditions (i.e., long-term diabetic complications and inflammatory pathologies). So far, however, clinical candidates have failed due to adverse side-effects (spiroimides) or poor bioavailability (carboxylic acids). In this work, we succeeded in the bioisosteric replacement of an acetic acid moiety with that of 1-hydroxypyrazole. This new scaffold appears to have a superior physicochemical profile, while attaining inhibitory activity in the submicromolar range.


Assuntos
Ácido Acético/química , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Pirazóis/química , Aldeído Redutase/metabolismo , Animais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Rim/enzimologia , Cinética , Córtex do Cristalino/enzimologia , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Ratos , Relação Estrutura-Atividade
9.
ChemMedChem ; 17(7): e202100735, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077612

RESUMO

A series of novel σ1 receptor ligands with a 4-(2-aminoethyl)piperidine scaffold was prepared and biologically evaluated. The underlying concept of our project was the improvement of the lipophilic ligand efficiency of previously synthesized potent σ1 ligands. The key steps of the synthesis comprise the conjugate addition of phenylboronic acid at dihydropyridin-4(1H)-ones 7, homologation of the ketones 8 and introduction of diverse amino moieties and piperidine N-substituents. 1-Methylpiperidines showed particular high σ1 receptor affinity and selectivity over the σ2 subtype, whilst piperidines with a proton, a tosyl moiety or an ethyl moiety exhibited considerably lower σ1 affinity. Molecular dynamics simulations with per-residue binding free energy deconvolution demonstrated that different interactions of the basic piperidine-N-atom and its substituents (or the cyclohexane ring) with the lipophilic binding pocket consisting of Leu105, Thr181, Leu182, Ala185, Leu186, Thr202 and Tyr206 are responsible for the different σ1 receptor affinities. Recorded logD7.4 and calculated clogP values of 4a and 18a indicate low lipophilicity and thus high lipophilic ligand efficiency. Piperidine 4a inhibited the growth of human non-small cell lung cancer cells A427 to a similar extent as the σ1 antagonist haloperidol. 1-Methylpiperidines 20a, 21a and 22a showed stronger antiproliferative effects on androgen negative human prostate cancer cells DU145 than the σ1 ligands NE100 and S1RA.


Assuntos
Antineoplásicos , Piperidinas , Receptores sigma , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Humanos , Ligantes , Neoplasias Pulmonares , Masculino , Piperidinas/química , Piperidinas/farmacologia , Neoplasias da Próstata , Receptores sigma/metabolismo , Relação Estrutura-Atividade
10.
ChemMedChem ; 13(4): 321-337, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29327456

RESUMO

With possible implications in multiple autoimmune diseases, the retinoic acid receptor-related orphan receptor RORγ has become a sought-after target in the pharmaceutical industry. Herein are described the efforts to identify a potent RORγ inverse agonist compatible with topical application for the treatment of skin diseases. These efforts culminated in the discovery of N-(2,4-dimethylphenyl)-N-isobutyl-2-oxo-1-[(tetrahydro-2H-pyran-4-yl)methyl]-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide (CD12681), a potent inverse agonist with in vivo activity in an IL-23-induced mouse skin inflammation model.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Psoríase/tratamento farmacológico , Sulfonamidas/química , Administração Tópica , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Humanos , Concentração Inibidora 50 , Interleucina-17/metabolismo , Interleucina-23/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
11.
Future Med Chem ; 10(10): 1159-1175, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29787297

RESUMO

BACKGROUND: Medicinal interest has focused on ß-carbolines as anticancer agents. METHODOLOGY/RESULTS: Several ß-carbolines were designed, synthesized and evaluated for their cytotoxic activity against MCF-7 and A-549 cancer cell lines using MTT assay. Compounds 13a, 13c, 13d and 20a were the most promising showing high selectivity indices. Compounds 13c and 20a showed potent inhibition of topoisomerase (topo-I) and kinesin spindle protein (KSP/Eg5 ATPase) which was confirmed by their docking results into the active site of both enzymes. In silico physicochemical calculations predicted that compounds 13a, 13d and 20a obeyed Lipinski's rule of five. CONCLUSION: Compounds 13c and 20a are multitarget anticancer leads that act as potent inhibitors for both topo-I and/or KSP ATPase.


Assuntos
Antineoplásicos/síntese química , Carbolinas/química , Desenho de Fármacos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Carbolinas/metabolismo , Carbolinas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
12.
Adv Drug Deliv Rev ; 101: 22-33, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836397

RESUMO

Physicochemical properties underlie all aspects of drug action and are critical for solubility, permeability and successful formulation. Specific physicochemical properties shown to be relevant to oral drugs are size, lipophilicity, ionisation, hydrogen bonding, polarity, aromaticity and shape. The rule of 5 (Ro5) and subsequent studies have raised awareness of the importance of compound quality amongst bioactive molecules. Lipophilicity, probably the most important physical property of oral drugs, has on average changed little over time in oral drugs, until increases in drugs published after 1990. In contrast other molecular properties such as average size have increased significantly. Factors influencing property inflation include the targets pursued, where antivirals frequently violate the Ro5, risk/benefit considerations, and variable drug discovery practices. The compounds published in patents from the pharmaceutical industry are on average larger, more lipophilic and less complex than marketed oral drugs. The variation between individual companies' patented compounds is due to different practices and not to the targets pursued. Overall, there is demonstrable physical property attrition in moving from patents to candidate drugs to marketed drugs. The pharmaceutical industry's recent poor productivity has been due, in part, to progression of molecules that are unable to unambiguously test clinical efficacy, and attrition can therefore be improved by ensuring candidate drug quality is 'fit for purpose.' The combined ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of many marketed drugs are optimised relative to other molecules acting at the same target. Application of LLE in optimisation can help identify improved leads, even with challenging targets that seem to require lipophilic ligands. Because of their targets, some projects may need to pursue 'beyond Ro5' physicochemical space; such projects will require non-standard lead generation and optimisation and should not dominate in a well-balanced portfolio. Compound quality is controllable by lead selection and optimisation and should not be a cause of clinical failure.


Assuntos
Preparações Farmacêuticas/química , Administração Oral , Descoberta de Drogas , Indústria Farmacêutica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Solubilidade
13.
ACS Med Chem Lett ; 4(4): 414-8, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24900686

RESUMO

To resolve the metabolite redox cycling associated with our earlier clinical compound 2, we carried out lead optimization of lead molecule 1. Compound 4 showed improved lipophilic ligand efficiency and demonstrated robust glucose lowering in diet-induced obese mice without a liability in predictive preclinical drug safety studies. Thus, it was selected as a clinical candidate and further studied in type 2 diabetic patients. Clinical data suggests no evidence of metabolite cycling, which is consistent with the preclinical profiling of metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA