Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Adv Exp Med Biol ; 1444: 33-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467971

RESUMO

Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Timo , Autoimunidade , Antígenos , Células Epiteliais/metabolismo
2.
Clin Immunol ; 256: 109807, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821072

RESUMO

Autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), and non-alcoholic steatohepatitis (NASH) are chronic liver diseases (CLDs) of distinct etiologies that represent a public health risk with limited therapeutic options. A common feature among CLDs is an aggressive T cell response resulting in destruction of liver tissue and fibrosis. Here, we assessed the presence and nature of T cell inflammation in late-stage human AIH, PSC and NASH and examined whether targeting the T cell response can improve disease pathology in a mouse model (Traf6ΔTEC) of spontaneous AIH. T cell infiltration and ensuing inflammatory pathways were present in human AIH and PSC and to a lesser extent in NASH. However, we observed qualitative differences in infiltrating T cell subsets and upregulation of inflammatory pathways among these diseases, while mouse and human AIH exhibited similar immunogenic signatures. While gene expression profiles differed among diseases, we identified 52 genes commonly upregulated across all diseases that included the JAK3 tyrosine kinase. Therapeutic targeting of chronic AIH with the JAK inhibitor tofacitinib reduced hepatic T cell infiltration, AIH histopathology and associated immune parameters in treated Traf6ΔTEC mice. Our results indicate that targeting T cell responses in established hepatic autoimmune inflammation is a feasible strategy for developing novel therapeutic approaches to treat AIH and possibly other CLDs irrespective of etiology.


Assuntos
Doenças Autoimunes , Colangite Esclerosante , Hepatite Autoimune , Hepatopatias , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatite Autoimune/tratamento farmacológico , Inflamação
3.
FASEB J ; 35(5): e21535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817835

RESUMO

Thymic epithelial cells (TECs) are indispensable for T cell development, T cell receptor (TCR) repertoire selection, and specific lineage differentiation. Medullary thymic epithelial cells (mTECs), which account for the majority of TECs in adults, are critical for thymocyte selection and self-tolerance. CD74 is a nonpolymorphic transmembrane glycoprotein of major histocompatibility complex class II (MHCII) that is expressed in TECs. However, the exact role of CD74 in regulating the development of mTEC is poorly defined. In this research, we found that loss of CD74 resulted in a significant diminution in the medulla, a selective reduction in the cell number of mature mTECs expressing CD80 molecules, which eventually led to impaired thymic CD4+ T cell development. Moreover, RNA-sequence analysis showed that CD74 deficiency obviously downregulated the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in mTECs. Our results suggest that CD74 positively controls mTEC cellularity and maturation partially by activating the canonical NF-κB signaling pathway.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Diferenciação Celular , Células Epiteliais/patologia , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/fisiologia , Ativação Linfocitária/imunologia , NF-kappa B/metabolismo , Timo/patologia , Animais , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Transdução de Sinais , Timo/imunologia , Timo/metabolismo
4.
Eur J Immunol ; 46(8): 1826-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27378598

RESUMO

Development of the primary T-cell repertoire takes place in the thymus. The linked processes of T-cell differentiation and T-cell repertoire selection each depend on interactions between thymocytes and thymic stromal cells; in particular, with the epithelial cells of the cortical and medullary thymic compartments (cortical and medullary thymic epithelial cells; cTECs and mTECs, respectively). The importance of the thymic epithelial cell lineage in these processes was revealed in part through analysis of nude (nu/nu) mice, which are congenitally hairless and athymic. The nude phenotype results from null mutation of the forkhead transcription factor FOXN1, which has emerged as a pivotal regulator both of thymus development and homeostasis. FOXN1 has been shown to play critical roles in thymus development, function, maintenance, and even regeneration, which positions it as a master regulator of thymic epithelial cell (TEC) differentiation. In this review, we discuss current understanding of the regulation and functions of FOXN1 throughout thymus ontogeny, from the earliest stages of organogenesis through homeostasis to age-related involution, contextualising its significance through reference to other members of the wider Forkhead family.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/fisiologia , Organogênese , Timo/embriologia , Animais , Humanos , Camundongos , Camundongos Nus , Timócitos/citologia
5.
Front Immunol ; 15: 1375508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895117

RESUMO

Introduction: Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods: In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results: Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion: Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.


Assuntos
Animais Recém-Nascidos , Perfilação da Expressão Gênica , Timo , Transcriptoma , Tropismo Viral , Timo/virologia , Timo/imunologia , Animais , Camundongos , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Camundongos Endogâmicos C57BL , Humanos
6.
Cell Mol Immunol ; 20(12): 1472-1486, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37990032

RESUMO

The expression of self-antigens in medullary thymic epithelial cells (mTECs) is essential for the establishment of immune tolerance, but the regulatory network that controls the generation and maintenance of the multitude of cell populations expressing self-antigens is poorly understood. Here, we show that Insm1, a zinc finger protein with known functions in neuroendocrine and neuronal cells, is broadly coexpressed with an autoimmune regulator (Aire) in mTECs. Insm1 expression is undetectable in most mimetic cell populations derived from mTECs but persists in neuroendocrine mimetic cells. Mutation of Insm1 in mice downregulated Aire expression, dysregulated the gene expression program of mTECs, and altered mTEC subpopulations and the expression of tissue-restricted antigens. Consistent with these findings, loss of Insm1 resulted in autoimmune responses in multiple peripheral tissues. We found that Insm1 regulates gene expression in mTECs by binding to chromatin. Interestingly, the majority of the Insm1 binding sites are co-occupied by Aire and enriched in superenhancer regions. Together, our data demonstrate the important role of Insm1 in the regulation of the repertoire of self-antigens needed to establish immune tolerance.


Assuntos
Tolerância Imunológica , Timo , Camundongos , Animais , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Autoantígenos/metabolismo , Diferenciação Celular , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Front Immunol ; 13: 948259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110862

RESUMO

The expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells (mTECs) is believed to be responsible for the elimination of autoreactive T cells, a critical process in the maintenance of central immune tolerance. The transcription factor autoimmune regulator (Aire) and FEZ family zinc finger 2(Fezf2) play an essential role in driving the expression of TSAs in mTECs, while their deficiency in humans and mice causes a range of autoimmune manifestations, such as type 1 diabetes, Sjögren's syndrome and rheumatoid arthritis. However, because of their regulatory mechanisms, the expression profile of TSAs and their relationship with special autoimmune diseases are still in dispute. In this review, we compare the roles of Aire and Fezf2 in regulating TSAs, with an emphasis on their molecular mechanisms in autoimmune diseases, which provides the foundation for devising improved diagnostic and therapeutic approaches for patients.


Assuntos
Doenças Autoimunes , Fatores de Transcrição , Animais , Doenças Autoimunes/metabolismo , Tolerância Central , Células Epiteliais , Regulação da Expressão Gênica , Humanos , Camundongos , Fatores de Transcrição/metabolismo , Proteína AIRE
8.
BMC Mol Cell Biol ; 23(1): 15, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331137

RESUMO

BACKGROUND: Besides controlling the expression of peripheral tissue antigens, the autoimmune regulator (AIRE) gene also regulates the expression of adhesion genes in medullary thymic epithelial cells (mTECs), an essential process for mTEC-thymocyte interaction for triggering the negative selection in the thymus. For these processes to occur, it is necessary that the medulla compartment forms an adequate three-dimensional (3D) architecture, preserving the thymic medulla. Previous studies have shown that AIRE knockout (KO) mice have a small and disorganized thymic medulla; however, whether AIRE influences the mTEC-mTEC interaction in the maintenance of the 3D structure has been little explored. Considering that AIRE controls cell adhesion genes, we hypothesized that this gene affects 3D mTEC-mTEC interaction. To test this, we constructed an in vitro model system for mTEC spheroid formation, in which cells adhere to each other, establishing a 3D structure. RESULTS: The comparisons between AIRE wild type (AIREWT) and AIRE KO (AIRE-/-) 3D mTEC spheroid formation showed that the absence of AIRE: i) disorganizes the 3D structure of mTEC spheroids, ii) increases the proportion of cells at the G0/G1 phase of the cell cycle, iii) increases the rate of mTEC apoptosis, iv) decreases the strength of mTEC-mTEC adhesion, v) promotes a differential regulation of mTEC classical surface markers, and vi) modulates genes encoding adhesion and other molecules. CONCLUSIONS: Overall, the results show that AIRE influences the 3D structuring of mTECs when these cells begin the spheroid formation through controlling cell adhesion genes.


Assuntos
Células Epiteliais , Genes Reguladores , Animais , Adesão Celular , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Camundongos , Camundongos Knockout
9.
Front Pharmacol ; 12: 783946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955855

RESUMO

Excessive secretion of airway mucus and fluid accumulation are the common features of many respiratory diseases, which, in turn, induce cell hypoxia in the airway epithelium, resulting in epithelial-mesenchymal transition (EMT) and ultimately fibrosis. However, the mechanisms of EMT induced by hypoxia in the airway are currently unclear. To mimic the status of edematous fluid retention in the airway, we cultured primary mouse tracheal epithelial cells (MTECs) in a liquid-liquid interface (LLI) mode after full differentiation in a classic air-liquid interface (ALI) culture system. The cell hypoxia was verified by the physical characteristics and lactate production in cultured medium as well as HIF expression in MTECs cultured by LLI mode. EMT was evidenced and mainly mediated by basal cells, supported by flow cytometry and immunofluorescence assay. The differently expressed genes of basal and other airway epithelial cells were found to be enriched in the ribosome by our analysis of an MTEC single-cell RNA sequencing data set and Myc, the global regulator of ribosome biogenesis was identified to be highly expressed in basal cells. We next separated basal cells from bulk MTECs by flow cytometry, and the real-time PCR results showed that ribosome biogenesis was significantly upregulated in basal cells, whereas the inhibition of ribosome biogenesis alleviated the phosphorylation of the mammalian target of rapamycin/AKT and abrogated hypoxia-induced EMT in MTECs. Collectively, these observations strongly suggest that basal cells in the airway epithelium may mediate the process of hypoxia-induced EMT, partly through enhancing ribosome biogenesis.

10.
Front Immunol ; 11: 1039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547551

RESUMO

Aire is a transcriptional controller in medullary thymic epithelial cells (mTECs) modulating a set of peripheral tissue antigens (PTAs) and non-PTA mRNAs as well as miRNAs. Even miRNAs exerting posttranscriptional control of mRNAs in mTECs, the composition of miRNA-mRNA networks may differ. Under reduction in Aire expression, networks exhibited greater miRNA diversity controlling mRNAs. Variations in the number of 3'UTR binding sites of Aire-dependent mRNAs may represent a crucial factor that influence the miRNA interaction. To test this hypothesis, we analyzed through bioinformatics the length of 3'UTRs of a large set of Aire-dependent mRNAs. The data were obtained from existing RNA-seq of mTECs of wild type or Aire-knockout (KO) mice. We used computational algorithms as FASTQC, STAR and HTSEQ for sequence alignment and counting reads, DESEQ2 for the differential expression, 3USS for the alternative 3'UTRs and TAPAS for the alternative polyadenylation sites. We identified 152 differentially expressed mRNAs between these samples comprising those that encode PTAs as well as transcription regulators. In Aire KO mTECs, most of these mRNAs featured an increase in the length of their 3'UTRs originating additional miRNA binding sites and new miRNA controllers. Results from the in silico analysis were statistically significant and the predicted miRNA-mRNA interactions were thermodynamically stable. Even with no in vivo or in vitro experiments, they were adequate to show that lack of Aire in mTECs might favor the downregulation of PTA mRNAs and transcription regulators via miRNA control. This could unbalance the overall transcriptional activity in mTECs and thus the self-representation.


Assuntos
Regiões 3' não Traduzidas , RNA Mensageiro/genética , Timo/metabolismo , Fatores de Transcrição/genética , Algoritmos , Animais , Antígenos/genética , Sítios de Ligação/genética , Simulação por Computador , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , MicroRNAs/genética , Poliadenilação/genética , Poliendocrinopatias Autoimunes/genética , RNA-Seq , Alinhamento de Sequência , Timo/citologia , Timo/imunologia , Fatores de Transcrição/deficiência , Proteína AIRE
11.
Front Immunol ; 11: 628464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329618

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2019.03099.].

12.
Front Pharmacol ; 10: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723408

RESUMO

Influenza virus has a significant impact on the respiratory system. The mechanism of how influenza virus impairs the fluid transport in airway is not fully understood. We examined its effects on epithelial sodium channels (ENaC), which are very important for water and salt transport in the respiratory system. We focused on the impacts of influenza virus on ENaC activity in mouse tracheal epithelial cells (MTECs) and applied Ussing chamber apparatus for recording the short-circuit currents in primary cultured MTECs. Expressions of α and γ-ENaC were measured at the protein and mRNA levels by western blot and quantitative real-time polymerase chain reaction, respectively. Roles of the with-no-lysine-kinase-4 (WNK4) pathway were considered in participating influenza virus-involved ENaC regulation by using siRNA to knockdown WNK4 and the physical properties of airway surface liquid (ASL) were detected by confocal microscopy. Our results showed that influenza virus reduced ENaC activity, and the expressions of α and γ-ENaC were decreased at the protein and mRNA levels, respectively. WNK4 expression increased time-dependently at the protein level after influenza virus infection, while knockdown of WNK4 rescued the impact of influenza virus on ENaC and ASL height increased obviously after MTECs were treated with influenza virus. Taken together, these results suggest that influenza virus causes the changes of biophysical profile in the airway by altering the ENaC activity at least partly via facilitating the expression of WNK4.

13.
Mol Immunol ; 114: 600-611, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31539668

RESUMO

In this work, we demonstrate that adhesion between medullary thymic epithelial cells (mTECs) and thymocytes is controlled by miRNAs. Adhesion between mTECs and developing thymocytes is essential for triggering negative selection (NS) of autoreactive thymocytes that occurs in the thymus. Immune recognition is mediated by the MHC / TCR receptor, whereas adhesion molecules hold cell-cell interaction stability. Indeed, these processes must be finely controlled, if it is not, it may lead to aggressive autoimmunity. Conversely, the precise molecular genetic control of mTEC-thymocyte adhesion is largely unclear. Here, we asked whether miRNAs would be controlling this process through the posttranscriptional regulation of mRNAs that encode adhesion molecules. For this, we used small interfering RNA to knockdown (KD) Dicer mRNA in vitro in a murine mTEC line. A functional assay with fresh murine thymocytes co-cultured with mTECs showed that single-positive (SP) CD4 and CD8 thymocyte adhesion was increased after Dicer KD and most adherent subtype was CD8 SP cells. Analysis of broad mTEC transcriptional expression showed that Dicer KD led to the modulation of 114 miRNAs and 422 mRNAs, including those encoding cell adhesion or extracellular matrix proteins, such as Lgals9, Lgals3pb, Tnc and Cd47. Analysis of miRNA-mRNA networks followed by miRNA mimic transfection showed that these mRNAs are under the control of miR-181b-5p and miR-30b*, which may ultimately control mTEC-thymocyte adhesion. The expression of CD80 surface marker in mTECs was increased after Dicer KD following thymocyte adhesion. This indicates the existence of new mechanisms in mTECs that involve the synergistic action of thymocyte adhesion and regulatory miRNAs.


Assuntos
Adesão Celular/imunologia , Células Epiteliais/imunologia , MicroRNAs/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Antígeno B7-1/imunologia , Biomarcadores/sangue , Diferenciação Celular/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância a Antígenos Próprios/imunologia , Fatores de Transcrição/imunologia
14.
Front Immunol ; 10: 3099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082299

RESUMO

The thymus is the primary lymphoid organ responsible for the generation and maturation of T cells. Thymic epithelial cells (TECs) account for the majority of thymic stromal components. They are further divided into cortical and medullary TECs based on their localization within the thymus and are involved in positive and negative selection, respectively. Establishment of self-tolerance in the thymus depends on promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) by TECs. Such pGE is co-controlled by the autoimmune regulator (Aire) and forebrain embryonic zinc fingerlike protein 2 (Fezf2). Over the past two decades, research has found that TECs contribute greatly to thymopoiesis and T cell development. In turn, signals from T cells regulate the differentiation and maturation of TECs. Several signaling pathways essential for the development and maturation of TECs have been discovered. New technology and animal models have provided important observations on TEC differentiation, development, and thymopoiesis. In this review, we will discuss recent advances in classification, development, and maintenance of TECs and mechanisms that control TEC functions during thymic involution and central tolerance.


Assuntos
Diferenciação Celular , Células Epiteliais/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/fisiologia , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunofenotipagem , Linfopoese , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
15.
Genome Biol ; 17(1): 219, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776542

RESUMO

BACKGROUND: In order to become functionally competent but harmless mediators of the immune system, T cells undergo a strict educational program in the thymus, where they learn to discriminate between self and non-self. This educational program is, to a large extent, mediated by medullary thymic epithelial cells that have a unique capacity to express, and subsequently present, a large fraction of body antigens. While the scope of promiscuously expressed genes by medullary thymic epithelial cells is well-established, relatively little is known about the expression of variants that are generated by co-transcriptional and post-transcriptional processes. RESULTS: Our study reveals that in comparison to other cell types, medullary thymic epithelial cells display significantly higher levels of alternative splicing, as well as A-to-I and C-to-U RNA editing, which thereby further expand the diversity of their self-antigen repertoire. Interestingly, Aire, the key mediator of promiscuous gene expression in these cells, plays a limited role in the regulation of these transcriptional processes. CONCLUSIONS: Our results highlight RNA processing as another layer by which the immune system assures a comprehensive self-representation in the thymus which is required for the establishment of self-tolerance and prevention of autoimmunity.


Assuntos
Células Epiteliais/imunologia , Edição de RNA/genética , Timo/imunologia , Processamento Alternativo/genética , Processamento Alternativo/imunologia , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Camundongos , Edição de RNA/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Fatores de Transcrição/genética
16.
Cancer Med ; 3(4): 825-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810801

RESUMO

The identification of a specific biomarker involves the development of new clinical diagnostic tools, and an in-depth understanding of the disease at the molecular level. When new blood vessels form in tumor cells, endothelial cell production is induced, a process that plays a key role in disease progression and metastasis to distinct organs for solid tumor types. The present study reports on the identification of a new biomarker on primary cultured mouse tumor endothelial cells (mTECs) using our recently developed high-affinity DNA aptamer AraHH001 (Kd = 43 nmol/L) assisted proteomics approach. We applied a strategy involving aptamer-facilitated biomarker discovery. Biotin-tagged AraHH001 was incubated with lysates of mTECs and the aptamer-proteins were then conjugated with streptavidin magnetic beads. Finally, the bound proteins were separated by sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. We identified troponin T via matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, the molecular target of aptamer AraHH001, and its presence was confirmed by measuring mRNA, protein levels, western blot, immunostaining, a gel shift assay of AraHH001 with troponin T. We first report here on the discovery of troponin T on mTECs, a promising and interesting diagnostic tool in the development of antiangiogenic therapy techniques the involves the targeting of the tumor vasculature.


Assuntos
Biomarcadores Tumorais/metabolismo , Células Endoteliais/metabolismo , Troponina T/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Peptídeos , Humanos , Camundongos , Técnica de Seleção de Aptâmeros , Coloração e Rotulagem , Células Tumorais Cultivadas
17.
Front Immunol ; 5: 511, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368616

RESUMO

Discovery and characterization of the cytokine receptor-cytokine-decoy receptor triad formed by receptor activator of nuclear factor kappa-B ligand (RANKL)-receptor activator of NF-κB (RANK)-osteoprotegerin (OPG) have led not only to immense advances in understanding the biology of bone homeostasis, but have also crystalized appreciation of the critical regulatory relationship that exists between bone and immunity, resulting in the emergence of the burgeoning field of osteoimmunology. RANKL-RANK-OPG are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies, and share signaling characteristics common to many members of each. Developmentally regulated and cell-type specific expression patterns of each of these factors have revealed key regulatory functions for RANKL-RANK-OPG in bone homeostasis, organogenesis, immune tolerance, and cancer. Successful efforts at designing and developing therapeutic agents targeting RANKL-RANK-OPG have been undertaken for osteoporosis, and additional efforts are underway for other conditions. In this review, we will summarize the basic biology of the RANKL-RANK-OPG system, relate its cell-type specific functions to system-wide mechanisms of development and homeostasis, and highlight emerging areas of interest for this cytokine group.

18.
J Proteomics ; 94: 23-36, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24029068

RESUMO

The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE: We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Timo/metabolismo , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Lactente , Masculino , Especificidade de Órgãos/fisiologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA