Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(1): 53-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738381

RESUMO

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.


Assuntos
Cicer , Cicer/metabolismo , Locos de Características Quantitativas/genética , Alelos , Domesticação , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genética
2.
Plant J ; 116(2): 389-403, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403589

RESUMO

Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.


Assuntos
Gossypium , Tricomas , Gossypium/genética , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epiderme Vegetal/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
BMC Plant Biol ; 24(1): 286, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627660

RESUMO

Fruit length is a crucial agronomic trait of snake gourd (Trichosanthes anguina L); however, genes associated with fruit length have not been characterised. In this study, F2 snake gourd populations were generated by crossing the inbred lines, S1 and S2 (fruit lengths: 110 and 20 cm, respectively). Subsequently, bulk segregant analysis, sequencing, and fine-mapping were performed on the F2 population to identify target genes. Our findings suggest that the fruit length of snake gourd is regulated by a major-effect regulatory gene. Mining of genes regulating fruit length in snake gourd to provide a basis for subsequent selection and breeding of new varieties. Genotype-phenotype association analysis was performed on the segregating F2 population comprising 6,000 plants; the results indicate that the target gene is located on Chr4 (61,846,126-61,865,087 bp, 18.9-kb interval), which only carries the annotated candidate gene, Tan0010544 (designated TFL). TFL belongs to the MADS-box family, one of the largest transcription factor families. Sequence analysis revealed a non-synonymous mutation of base C to G at position 202 in the coding sequence of TFL, resulting in the substitution of amino acid Gln to Glu at position 68 in the protein sequence. Subsequently, an InDel marker was developed to aid the marker-assisted selection of TFL. The TFL in the expression parents within the same period was analysed using quantitative real-time PCR; the TFL expression was significantly higher in short fruits than long fruits. Therefore, TFL can be a candidate gene for determining the fruit length in snake gourd. Collectively, these findings improve our understanding of the genetic components associated with fruit length in snake gourds, which could aid the development of enhanced breeding strategies for plant species.


Assuntos
Trichosanthes , Trichosanthes/genética , Frutas/genética , Melhoramento Vegetal , Fenótipo , Genes de Plantas/genética
4.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262958

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Nicotiana , Melhoramento Vegetal , Horticultura
5.
Plant Biotechnol J ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943653

RESUMO

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

6.
J Exp Bot ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824403

RESUMO

Rapeseed (Brassica napus) is an important oilseed crop worldwide. Plant vascular tissues are responsible for material transport and provide mechanical support. The lateral roots (LRs) absorb sufficient water and nutrients. The genetic basis of vascular tissues and LRs development in rapeseed remains unknown. This study characterized an EMS-mutagenized rapeseed mutant, T16, which showed dwarf stature, reduced LRs, and leaf wilting. Scanning electron microscopy observations showed that the internode-cell shortened. Observations of the tissue sections revealed defects in the development of vascular bundles in the stems and petioles. Genetic analysis revealed that the phenotypes of T16 were controlled by a single semi-dominant nuclear gene. Map-based cloning and genetic complementarity confirmed that BnaA03.IAA13 is the functional gene, a G-to-A mutation in second exon changed the glycine at the 79th position to glutamic acid, disrupting the conserved degron motif VGWPP. Transcriptome analysis in roots and stems showed that auxin and cytokinin signaling pathways were disordered in T16. Evolutionary analysis showed that AUXIN/INDOLE-3-ACETIC ACID was conserved during plant evolution. The heterozygote of T16 significantly reduced the plant height while maintaining other agronomic traits. Our findings provide novel insights into the regulatory mechanisms of vascular tissues and LRs development, and provide a new germplasm resource for rapeseed breeding.

7.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928342

RESUMO

Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the spl43 mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2. We identified LOC_Os02g56000, named OsRPT5A, as the causative gene. A point mutation in OsRPT5A, substituting valine for glutamic acid, was identified as the critical factor for the phenotype. Functional complementation and the generation of CRISPR/Cas9-mediated knockout lines in the IR64 background confirmed the central role of OsRPT5A in controlling this trait. The qPCR results from different parts of the rice plant revealed that OsRPT5A is constitutively expressed across various tissues, with its subcellular localization unaffected by the mutation. Notably, we observed an abnormal accumulation of reactive oxygen species (ROS) in spl43 mutants by examining the physiological indexes of leaves, suggesting a disruption in the ROS system. Complementation studies indicated OsRPT5A's involvement in ROS homeostasis and catalase activity regulation. Moreover, the spl43 mutant exhibited enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), highlighting OsRPT5A's role in rice pathogen resistance mechanisms. Overall, our results suggest that OsRPT5A plays a critical role in regulating ROS homeostasis and enhancing pathogen resistance in rice.


Assuntos
Mapeamento Cromossômico , Oryza , Doenças das Plantas , Folhas de Planta , Proteínas de Plantas , Espécies Reativas de Oxigênio , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Mutação , Fenótipo , Regulação da Expressão Gênica de Plantas
8.
J Integr Plant Biol ; 66(6): 1242-1260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656698

RESUMO

Leaf senescence is an essential physiological process related to grain yield potential and nutritional quality. Green leaf duration (GLD) after anthesis directly reflects the leaf senescence process and exhibits large genotypic differences in common wheat; however, the underlying gene regulatory mechanism is still lacking. Here, we identified TaNAM-A1 as the causal gene of the major loci qGLD-6A for GLD during grain filling by map-based cloning. Transgenic assays and TILLING mutant analyses demonstrated that TaNAM-A1 played a critical role in regulating leaf senescence, and also affected spike length and grain size. Furthermore, the functional divergences among the three haplotypes of TaNAM-A1 were systematically evaluated. Wheat varieties with TaNAM-A1d (containing two mutations in the coding DNA sequence of TaNAM-A1) exhibited a longer GLD and superior yield-related traits compared to those with the wild type TaNAM-A1a. All three haplotypes were functional in activating the expression of genes involved in macromolecule degradation and mineral nutrient remobilization, with TaNAM-A1a showing the strongest activity and TaNAM-A1d the weakest. TaNAM-A1 also modulated the expression of the senescence-related transcription factors TaNAC-S-7A and TaNAC016-3A. TaNAC016-3A enhanced the transcriptional activation ability of TaNAM-A1a by protein-protein interaction, thereby promoting the senescence process. Our study offers new insights into the fine-tuning of the leaf functional period and grain yield formation for wheat breeding under various geographical climatic conditions.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , Haplótipos , Folhas de Planta , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Haplótipos/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Senescência Vegetal/genética , Genes de Plantas , Variação Genética , Fenótipo
9.
Plant J ; 111(2): 608-616, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510429

RESUMO

Though Medicago truncatula Tnt1 mutants are widely used by researchers in the legume community, they are mainly used for reverse genetics because of the availability of the BLAST-searchable large-scale flanking sequence tags database. However, these mutants should have also been used extensively for forward genetic screens, an effort that has been hindered due to the lack of a compatible genetic crossing partner for the M. truncatula genotype R108, from which Tnt1 mutants were generated. In this study, we selected three Medicago HapMap lines (HM017, HM018 and HM022) and performed reciprocal genetic crosses with R108. After phenotypic analyses in F1 and F2 progenies, HM017 was identified as a compatible crossing partner with R108. By comparing the assembled genomic sequences of HM017 and R108, we developed and confirmed 318 Indel markers evenly distributed across the eight chromosomes of the M. truncatula genome. To validate the effectiveness of these markers, by employing the map-based cloning approach, we cloned the causative gene in the dwarf mutant crs isolated from the Tnt1 mutant population, identifying it as gibberellin 3-ß-dioxygenase 1, using some of the confirmed Indel markers. The primer sequences and the size difference of each marker were made available for users in the web-based database. The identification of the crossing partner for R108 and the generation of Indel markers will enhance the forward genetics and the overall usage of the Tnt1 mutants.


Assuntos
Medicago truncatula , Bases de Dados de Ácidos Nucleicos , Genes de Plantas , Testes Genéticos , Medicago truncatula/genética , Mutagênese Insercional
10.
Plant J ; 111(6): 1717-1731, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882961

RESUMO

Canola (Brassica napus) is an important oil crop worldwide. The seed-setting rate (SS) is a critical factor in determining its yield, and the development of pistils affects pollination and seed sets. However, research on seed-setting defects has been limited owing to difficulties in the identification of phenotypes, mutations, and complex genetic mechanisms. In this study, we found a stigma defect (sd) mutant in B. napus, which had no nectary. The SS of sd mutants in the field was approximately 93.4% lower than that of the wild type. Scanning and transmission electron microscopy imaging of sd mutants showed a low density of stigma papillary cells and stigma papillary cell vacuoles that disappeared 16 h after flowering. Genetic analysis of segregated populations showed that two recessive nuclear genes are responsible for the mutant phenotype of sd. Based on re-sequencing and map-based cloning, we reduced the candidate sites on ChrA07 (BnaSSA07) and ChrC06 (BnaSSC06) to 30 and 67 kb, including six and eight predicted genes, respectively. Gene analyses showed that a pair of CRABS CLAW (CRC) homeologous genes at BnaSSA07 and BnaSSC06 were associated with the development of carpel and nectary. BnaSSA07.CRC and BnaSSC06.CRC candidate genes were found to be expressed in flower organs only, with significant differences in their expression in the pistils of the near-isogenic lines. DNA sequencing showed transposon insertions in the upstream region and intron of the candidate gene BnaSSA07.crc. We also found that BnaSSC06.crc exists widely in the natural population and we give possible reasons for its widespread existence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Domesticação , Flores , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo
11.
Plant Mol Biol ; 111(3): 263-273, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414883

RESUMO

Zinc (Zn) deficiency, caused by inadequate Zn intake in the human diet, has serious health implications. Rice (Oryza sativa) is the staple food in regions with a high incidence of Zn deficiency, so raising Zn levels in rice grain could help alleviate Zn deficiency. The wild relatives of cultivated rice vary widely in grain Zn content and thus are suitable resources for improving this trait. However, few loci underlying grain Zn content have been identified in wild rice relatives. Here, we identified a major quantitative trait locus for grain Zn content, Grain Zn Content 1 (qGZnC1), from Yuanjiang common wild rice (Oryza rufipogon Griff.) using map-based cloning. Down-regulating GZnC1 expression reduced the grain Zn content, whereas the presence of GZnC1 had the opposite effect, indicating that GZnC1 is involved in grain Zn content in rice. Notably, GZnC1 is identical to a previously reported gene, EMBRYO SAC ABORTION 1 (ESA1), involved in seed setting rate. The mutation in GZnC1/ESA1 at position 1819 (T1819C) causes delayed termination of protein translation. In addition, GZnC1 is specifically expressed in developing panicles. Several genes related to Zn-transporter genes were up-regulated in the presence of GZnC1. Our results suggest that GZnC1 activates Zn transporters to promote Zn distribution in panicles. Our work thus sheds light on the genetic mechanism of Zn accumulation in rice grain and provides a new genetic resource for improving Zn content in rice.


Assuntos
Oryza , Humanos , Oryza/genética , Grão Comestível/genética , Locos de Características Quantitativas , Fenótipo , Zinco/metabolismo
12.
BMC Plant Biol ; 23(1): 360, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452313

RESUMO

BACKGROUND: The structural basis of chloroplast and the regulation of chloroplast biogenesis remain largely unknown in maize. Gene mutations in these pathways have been linked to the abnormal leaf color phenotype observed in some mutants. Large scale structure variants (SVs) are crucial for genome evolution, but few validated SVs have been reported in maize and little is known about their functions though they are abundant in maize genomes. RESULTS: In this research, a spontaneous maize mutant, pale green leaf-shandong (pgl-sd), was studied. Genetic analysis showed that the phenotype of pale green leaf was controlled by a recessive Mendel factor mapped to a 156.8-kb interval on the chromosome 1 delineated by molecular markers gy546 and gy548. There were 7 annotated genes in this interval. Reverse transcription quantitative PCR analysis, SV prediction, and de novo assembly of pgl-sd genome revealed that a 137.8-kb deletion, which was verified by Sanger sequencing, might cause the pgl-sd phenotype. This deletion contained 5 annotated genes, three of which, including Zm00001eb031870, Zm00001eb031890 and Zm00001eb031900, were possibly related to the chloroplast development. Zm00001eb031870, encoding a Degradation of Periplasmic Proteins (Deg) homolog, and Zm00001eb031900, putatively encoding a plastid pyruvate dehydrogenase complex E1 component subunit beta (ptPDC-E1-ß), might be the major causative genes for the pgl-sd mutant phenotype. Plastid Degs play roles in protecting the vital photosynthetic machinery and ptPDCs provide acetyl-CoA and NADH for fatty acid biosynthesis in plastids, which were different from functions of other isolated maize leaf color associated genes. The other two genes in the deletion were possibly associated with DNA repair and disease resistance, respectively. The pgl-sd mutation decreased contents of chlorophyll a, chlorophyll b, carotenoids by 37.2%, 22.1%, and 59.8%, respectively, and led to abnormal chloroplast. RNA-seq revealed that the transcription of several other genes involved in the structure and function of chloroplast was affected in the mutant. CONCLUSIONS: It was identified that a 137.8-kb deletion causes the pgl-sd phenotype. Three genes in this deletion were possibly related to the chloroplast development, which may play roles different from that of other isolated maize leaf color associated genes.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila A/metabolismo , Fotossíntese/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Mutação , Regulação da Expressão Gênica de Plantas
13.
Plant Biotechnol J ; 21(5): 931-942, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610008

RESUMO

African cultivated rice (Oryza glaberrima Steud.) was domesticated from its wild progenitor species (Oryza barthii) about 3000 years ago. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest. By contrast, Asian cultivated rice (Oryza sativa) displays greater resistance to seed shattering, allowing higher grain production. A better understanding in regulation of seed shattering would help to improve harvesting efficiency in African cultivated rice. Here, we report the map-based cloning and characterization of OgSH11, a MYB transcription factor controlling seed shattering in O. glaberrima. OgSH11 represses the expression of lignin biosynthesis genes and lignin deposition by binding to the promoter of GH2. We successfully developed a new O. glaberrima material showing significantly reduced seed shattering by knockout of SH11 in O. glaberrima using CRISPR-Cas9 mediated approach. Identification of SH11 not only supplies a new target for seed shattering improvement in African cultivated rice, but also provides new insights into the molecular mechanism of abscission layer development.


Assuntos
Oryza , Lignina/genética , Sementes , Grão Comestível/genética , Fatores de Transcrição/genética
14.
Plant Biotechnol J ; 21(2): 433-448, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385569

RESUMO

Anthocyanin accumulations in the flowers can improve seed production of hybrid lines, and produce higher commodity value in cotton fibre. However, the genetic mechanism underlying the anthocyanin pigmentation in cotton petals is poorly understood. Here, we showed that the red petal phenotype was introgressed from Gossypium bickii through recombination with the segment containing the R3 bic region in the A07 chromosome of Gossypium hirsutum variety LR compared with the near-isogenic line of LW with white flower petals. The cyanidin-3-O-glucoside (Cy3G) was the major anthocyanin in red petals of cotton. A GhTT19 encoding a TT19-like GST was mapped to the R3 bic site associated with red petals via map-based cloning, but GhTT19 homologue gene from the D genome was not expressed in G. hirsutum. Intriguingly, allelic variations in the promoters between GhTT19LW and GhTT19LR , rather than genic regions, were found as genetic causal of petal colour variations. GhTT19-GFP was found localized in both the endoplasmic reticulum and tonoplast for facilitating anthocyanin transport. An additional MYB binding element found only in the promoter of GhTT19LR , but not in that of GhTT19LW , enhanced its transactivation by the MYB activator GhPAP1. The transgenic analysis confirmed the function of GhTT19 in regulating the red flower phenotype in cotton. The essential light signalling component GhHY5 bonded to and activated the promoter of GhPAP1, and the GhHY5-GhPAP1 module together regulated GhTT19 expression to mediate the light-activation of petal anthocyanin pigmentation in cotton. This study provides new insights into the molecular mechanisms for anthocyanin accumulation and may lay a foundation for faster genetic improvement of cotton.


Assuntos
Antocianinas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas/genética
15.
New Phytol ; 240(5): 1913-1929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668262

RESUMO

Plant height and grain size are two important agronomic traits that are closely related to crop yield. Numerous dwarf and grain-shape mutants have been studied to identify genes that can be used to increase crop yield and improve breeding programs. In this study, we characterized a dominant mutant, dwarf and round grain 1 (drg1-D), in bread wheat (Triticum aestivum L.). drg1-D plants exhibit multiple phenotypic changes, including dwarfism, round grains, and insensitivity to brassinosteroids (BR). Cell structure observation in drg1-D mutant plants showed that the reduced organ size is due to irregular cell shape. Using map-based cloning and verification in transgenic plants, we found that a Glu209Lys substitution in the DRG1 protein is responsible for the irregular cell size and arrangement in the drg1-D mutant. DRG1/TaACT7 encodes an actin family protein that is essential for polymerization stability and microfilament (MF) formation. In addition, the BR response and vesicular transport were altered by the abnormal actin cytoskeleton in drg1-D mutant plants. Our study demonstrates that DRG1/TaACT7 plays an important role in wheat cell shape determination by modulating actin organization and intracellular material transport, which could in the longer term provide tools to better understand the polymerization of actin and its assembly into filaments and arrays.


Assuntos
Actinas , Triticum , Actinas/metabolismo , Triticum/genética , Triticum/metabolismo , Pão , Melhoramento Vegetal , Grão Comestível/genética , Brassinosteroides/metabolismo , Citoesqueleto de Actina
16.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982870

RESUMO

Chloroplasts are essential sites for plant photosynthesis, and the biogenesis of the photosynthetic complexes involves the interaction of nuclear genes and chloroplast genes. In this study, we identified a rice pale green leaf mutant, crs2. The crs2 mutant showed different degrees of low chlorophyll phenotypes at different growth stages, especially at the seedling stage. Fine mapping and DNA sequencing of crs2 revealed a single nucleotide substitution (G4120A) in the eighth exons of CRS2, causing a G-to-R mutation of the 229th amino acid of CRS2 (G229R). The results of complementation experiments confirmed that this single-base mutation in crs2 is responsible for the phenotype of the crs2 mutant. CRS2 encodes a chloroplast RNA splicing 2 protein localized in the chloroplast. Western blot results revealed an abnormality in the abundance of the photosynthesis-related protein in crs2. However, the mutation of CRS2 leads to the enhancement of antioxidant enzyme activity, which could reduce ROS levels. Meanwhile, with the release of Rubisco activity, the photosynthetic performance of crs2 was improved. In summary, the G229R mutation in CRS2 causes chloroplast protein abnormalities and affects photosystem performance in rice; the above findings facilitate the elucidation of the physiological mechanism of chloroplast proteins affecting photosynthesis.


Assuntos
Oryza , Oryza/metabolismo , Nucleotídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotossíntese/genética , Cloroplastos/metabolismo , Clorofila/metabolismo , Fenótipo , Mutação , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
17.
Physiol Mol Biol Plants ; 29(3): 335-347, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37033767

RESUMO

In grass, the lemma is a unique floral organ structure that directly determines grain size and yield. Despite a great deal of research on grain enlargement caused by changes in glume cells, the importance of normal development of the glume for normal grain development has been poorly studied. In this study, we investigated a rice spikelet mutant, degenerated lemma (del), which developed florets with a slightly degenerated or rod-like lemma. More importantly, del also showed a significant reduction in grain length and width, seed setting rate, and 1000-grain weight, which led to a reduction in yield. The results indicate that the mutation of the DEL gene further affects rice grain yield. Map-based cloning shows a single-nucleotide substitution from T to A within Os01g0527600/DEL/OsRDR6, causing an amino acid mutation of Leu-34 to His-34 in the del mutant. Compared with the wild type, the expression of DEL in del was significantly reduced, which might be caused by single base substitution. In addition, the expression level of tasiR-ARF in del was lower than that of the wild type. RT-qPCR results show that the expression of some floral organ identity genes was changed, which indicates that the DEL gene regulates lemma development by modulating the expression of these genes. The present results suggest that the normal expression of DEL is necessary for the formation of lemma and the normal development of grain morphology and therefore has an important effect on the yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01297-6.

18.
Plant J ; 108(3): 781-792, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492144

RESUMO

The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that functions as the main deposit organ of gossypol and its derivatives. It is also an ideal system in which to study cell differentiation and organogenesis. However, only a few genes that determine the process of gland formation have been reported, including GoPGF, CGP1, and CGFs; the molecular mechanisms underlying gland initiation are still largely unclear. Here, we report the discovery of the novel stem pigment gland-forming gene GoSPGF by map-based cloning; annotated as a GRAS transcription factor, this gene is responsible for the glandless trait specifically on the stem. In the stem glandless mutant T582, a point mutation (C to A) was found to create a premature stop codon and truncate the protein. Similarly, virus-induced gene silencing of GoSPGF resulted in glandless stems and dramatically reduced gossypol content. Comparative transcriptomic data showed that loss of GoSPGF significantly suppressed expression of many genes involved in gossypol biosynthesis and altered expression of genes involved in gibberellic acid signaling/biosynthesis. Overall, these findings provide more insight into the networks regulating glandular structure differentiation and formation in cotton, which will be helpful for understanding other plants bearing special gland structures such as tobacco (Nicotiana benthamiana), artemisia annua, mint (Mentha spp.), and rubber (Hevea brasiliensis).


Assuntos
Gossypium/genética , Proteínas de Plantas/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Giberelinas/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Gossipol/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transdução de Sinais , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Plant Biotechnol J ; 20(8): 1591-1605, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35514030

RESUMO

Global warming is a major abiotic stress factor, which limit rice production. Exploiting the genetic basis of the natural variation in heat resistance at different reproductive stages among diverse exotic Oryza germplasms can help breeding heat-resistant rice cultivars. Here, we identified a stable quantitative trait locus (QTL) for heat tolerance at the heading stage on chromosome 5 (qHTH5) in O. rufipogon Griff. The corresponding gene, HTH5, pertains to the pyridoxal phosphate-binding protein PLPBP (formerly called PROSC) family, which is predicted to encode pyridoxal phosphate homeostasis protein (PLPHP) localized to the mitochondrion. Overexpression of HTH5 increased the seed-setting rate of rice plants under heat stress at the heading stage, whereas suppression of HTH5 resulted in greater susceptibility to heat stress. Further investigation indicated that HTH5 reduces reactive oxygen species accumulation at high temperatures by increasing the heat-induced pyridoxal 5'-phosphate (PLP) content. Moreover, we found that two SNPs located in the HTH5 promoter region are involved with its expression level and associated with heat tolerance diversity. These findings suggest that the novel gene HTH5 might have great potential value for heightening rice tolerance to heat stress to the on-going threat of global warming.


Assuntos
Oryza , Oryza/genética , Fenótipo , Melhoramento Vegetal , Piridoxal , Locos de Características Quantitativas/genética , Temperatura
20.
Plant Biotechnol J ; 20(10): 1956-1967, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748307

RESUMO

Lettuce (Lactuca sativa) is one of the most important vegetables worldwide and an ideal plant for producing protein drugs. Both well-functioning chloroplasts that perform robust photosynthesis and small leaf angles that enable dense planting are essential for high yields. In this study, we used an F2 population derived from a cross between a lettuce cultivar with pale-green leaves and large leaf angles to a cultivar with dark-green leaves and small leaf angles to clone LsNRL4, which encodes an NPH3/RPT2-Like (NRL) protein. Unlike other NRL proteins in lettuce, the LsNRL4 lacks the BTB domain. Knockout mutants engineered using CRISPR/Cas9 and transgenic lines overexpressing LsNRL4 verified that LsNRL4 contributes to chloroplast development, photosynthesis and leaf angle. The LsNRL4 gene was not present in the parent with pale-green leaves and enlarged leaf angles. Loss of LsNRL4 results in the enlargement of chloroplasts, decreases in the amount of cellular space allocated to chloroplasts and defects in secondary cell wall biosynthesis in lamina joints. Overexpressing LsNRL4 significantly improved photosynthesis and decreased leaf angles. Indeed, the plant architecture of the overexpressing lines is ideal for dense planting. In summary, we identified a novel NRL gene that enhances photosynthesis and influences plant architecture. Our study provides new approaches for the breeding of lettuce that can be grown in dense planting in the open field or in modern plant factories. LsNRL4 homologues may also be used in other crops to increase photosynthesis and improve plant architecture.


Assuntos
Lactuca , Melhoramento Vegetal , Cloroplastos/genética , Cloroplastos/metabolismo , Lactuca/genética , Lactuca/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA