Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 125(1): 23-42, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085562

RESUMO

Dendritic spikes in thin dendritic branches (basal and oblique dendrites) are traditionally inferred from spikelets measured in the cell body. Here, we used laser-spot voltage-sensitive dye imaging in cortical pyramidal neurons (rat brain slices) to investigate the voltage waveforms of dendritic potentials occurring in response to spatially restricted glutamatergic inputs. Local dendritic potentials lasted 200-500 ms and propagated to the cell body, where they caused sustained 10- to 20-mV depolarizations. Plateau potentials propagating from dendrite to soma and action potentials propagating from soma to dendrite created complex voltage waveforms in the middle of the thin basal dendrite, comprised of local sodium spikelets, local plateau potentials, and backpropagating action potentials, superimposed on each other. Our model replicated these voltage waveforms across a gradient of glutamatergic stimulation intensities. The model then predicted that somatic input resistance (Rin) and membrane time constant (tau) may be reduced during dendritic plateau potential. We then tested these model predictions in real neurons and found that the model correctly predicted the direction of Rin and tau change but not the magnitude. In summary, dendritic plateau potentials occurring in basal and oblique branches put pyramidal neurons into an activated neuronal state ("prepared state"), characterized by depolarized membrane potential and smaller but faster membrane responses. The prepared state provides a time window of 200-500 ms, during which cortical neurons are particularly excitable and capable of following afferent inputs. At the network level, this predicts that sets of cells with simultaneous plateaus would provide cellular substrate for the formation of functional neuronal ensembles.NEW & NOTEWORTHY In cortical pyramidal neurons, we recorded glutamate-mediated dendritic plateau potentials with voltage imaging and created a computer model that recreated experimental measures from dendrite and cell body. Our model made new predictions, which were then tested in experiments. Plateau potentials profoundly change neuronal state: a plateau potential triggered in one basal dendrite depolarizes the soma and shortens membrane time constant, making the cell more susceptible to firing triggered by other afferent inputs.


Assuntos
Potenciais de Ação , Dendritos/fisiologia , Modelos Neurológicos , Células Piramidais/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Dendritos/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos
2.
Cereb Cortex ; 26(8): 3655-3668, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288316

RESUMO

In the neocortex, inhibitory interneurons of the same subtype are electrically coupled with each other via dendritic gap junctions (GJs). The impact of multiple GJs on the biophysical properties of interneurons and thus on their input processing is unclear. The present experimentally based theoretical study examined GJs in L2/3 large basket cells (L2/3 LBCs) with 3 goals in mind: (1) To evaluate the errors due to GJs in estimating the cable properties of individual L2/3 LBCs and suggest ways to correct these errors when modeling these cells and the networks they form; (2) to bracket the GJ conductance value (0.05-0.25 nS) and membrane resistivity (10 000-40 000 Ω cm(2)) of L2/3 LBCs; these estimates are tightly constrained by in vitro input resistance (131 ± 18.5 MΩ) and the coupling coefficient (1-3.5%) of these cells; and (3) to explore the functional implications of GJs, and show that GJs: (i) dynamically modulate the effective time window for synaptic integration; (ii) improve the axon's capability to encode rapid changes in synaptic inputs; and (iii) reduce the orientation selectivity, linearity index, and phase difference of L2/3 LBCs. Our study provides new insights into the role of GJs and calls for caution when using in vitro measurements for modeling electrically coupled neuronal networks.


Assuntos
Junções Comunicantes/fisiologia , Interneurônios/fisiologia , Neocórtex/fisiologia , Sinapses/fisiologia , Animais , Axônios/fisiologia , Simulação por Computador , Dendritos/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Ratos
3.
J Neural Eng ; 21(4)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39079555

RESUMO

Objective.The transcranial magnetic stimulation (TMS) coil induces an electric field that diminishes rapidly upon entering the brain. This presents a challenge in achieving focal stimulation of a deep brain structure. Neuronal elements, including axons, dendrites, and cell bodies, exhibit specific time constants. When exposed to repetitive TMS pulses at a high frequency, there is a cumulative effect on neuronal membrane potentials, resulting in temporal summation. This study aims to determine whether TMS pulse train at high-frequency and subthreshold intensity could induce a suprathreshold response.Approach.As a proof of concept, we developed a TMS machine in-house that could consistently output pulses up to 250 Hz, and performed experiments on 22 awake rats to test whether temporal summation was detectable under pulse trains at 100, 166, or 250 Hz.Main results.Results revealed that TMS pulses at 55% maximum stimulator output (MSO, peak dI/dt= 68.5 A/µs at 100% MSO, pulse width = 48µs) did not induce motor responses with either single pulses or pulse trains. Similarly, a single TMS pulse at 65% MSO failed to evoke a motor response in rats; however, a train of TMS pulses at frequencies of 166 and 250 Hz, but not at 100 Hz, successfully triggered motor responses and MEP signals, suggesting a temporal summation effect dependent on both pulse intensities and pulse train frequencies.Significance.We propose that the temporal summation effect can be leveraged to design the next-generation focal TMS system: by sequentially driving multiple coils at high-frequency and subthreshold intensity, areas with the most significant overlapping E-fields undergo maximal temporal summation effects, resulting in a suprathreshold response.


Assuntos
Potencial Evocado Motor , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Ratos , Masculino , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Ratos Sprague-Dawley
4.
J Neural Eng ; 19(5)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36055218

RESUMO

Objective.To obtain a formalism for real-time concurrent sequential estimation of neural membrane time constant and input-output (IO) curve with transcranial magnetic stimulation (TMS).Approach.First, the neural membrane response and depolarization factor, which leads to motor evoked potentials with TMS are analytically computed and discussed. Then, an integrated model is developed which combines the neural membrane time constant and IO curve. Identifiability of the proposed integrated model is discussed. A condition is derived, which assures estimation of the proposed integrated model. Finally, sequential parameter estimation (SPE) of the neural membrane time constant and IO curve is described through closed-loop optimal sampling and open-loop uniform sampling TMS. Without loss of generality, this paper focuses on a specific case of commercialized TMS pulse shapes. The proposed formalism and SPE method are directly applicable to other pulse shapes.Main results.The results confirm satisfactory estimation of the membrane time constant and IO curve parameters. By defining a stopping rule based on five times consecutive convergence of the estimation parameters with a tolerances of 0.01, the membrane time constant and IO curve parameters are estimated with 82 TMS pulses with absolute relative estimation errors (AREs) of less than 4% with the optimal sampling SPE method. At this point, the uniform sampling SPE method leads to AREs up to 16%. The uniform sampling method does not satisfy the stopping rule due to the large estimation variations.Significance.This paper provides a tool for real-time closed-loop SPE of the neural time constant and IO curve, which can contribute novel insights in TMS studies. SPE of the membrane time constant enables selective stimulation, which can be used for advanced brain research, precision medicine and personalized medicine.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos
5.
Channels (Austin) ; 12(1): 81-88, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29380651

RESUMO

The negative slope conductance created by the persistent sodium current (INaP) prolongs the decay phase of excitatory postsynaptic potentials (EPSPs). In a recent study, we demonstrated that this effect was due to an increase of the membrane time constant. When the negative slope conductance opposes completely the positive slope conductances of the other currents it creates a zero slope conductance region. In this region the membrane time constant is infinite and the decay phase of the EPSPs is virtually absent. Here we show that non-decaying EPSPs are present in CA1 hippocampal pyramidal cells in the zero slope conductance region, in the suprathreshold range of membrane potential. Na+ channel block with tetrodotoxin abolishes the non-decaying EPSPs. Interestingly, the non-decaying EPSPs are observed only in response to artificial excitatory postsynaptic currents (aEPSCs) of small amplitude, and not in response to aEPSCs of big amplitude. We also observed concomitantly delayed spikes with long latencies and high variability only in response to small amplitude aEPSCs. Our results showed that in CA1 pyramidal neurons INaP creates non-decaying EPSPs and delayed spikes in the subthreshold range of membrane potentials, which could potentiate synaptic integration of synaptic potentials coming from distal regions of the dendritic tree.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Hipocampo/citologia , Células Piramidais/metabolismo , Sódio/metabolismo , Animais , Condutividade Elétrica , Masculino , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Tetrodotoxina/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
6.
Neuroscience ; 250: 755-72, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23876326

RESUMO

Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.


Assuntos
Aplysia/fisiologia , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Mitocôndrias/fisiologia , Células Neuroendócrinas/fisiologia , Alquilantes/farmacologia , Animais , Comportamento Animal/fisiologia , Cálcio/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Ovos , Capacitância Elétrica , Retículo Endoplasmático/metabolismo , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Imuno-Histoquímica , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Neuropeptídeos/biossíntese , Técnicas de Patch-Clamp , RNA de Cadeia Dupla/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA