Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161255

RESUMO

At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.


Assuntos
Carbonatos/química , Fenômenos Geológicos , Metano/metabolismo , Microbiota , Água do Mar/microbiologia , Geografia , Cinética , Microbiota/genética , Oxirredução , RNA Ribossômico 16S/genética
2.
Proc Biol Sci ; 290(2006): 20230985, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670587

RESUMO

Metabolic compensation has been proposed as a mean for ectotherms to cope with colder climates. For example, under the metabolic cold adaptation and the metabolic homeostasis hypotheses (MCA and MHH), it has been formulated that cold-adapted ectotherms should display both higher (MCA) and more thermally sensitive (MHH) metabolic rates (MRs) at lower temperatures. However, whether such compensation can truly be associated with distribution, and whether it interplays with cold tolerance to predict species' climatic niches, remains largely unclear despite broad ecological implications thereof. Here, we teased apart the relationship between MRs, cold tolerance and distribution, to test the MCA/MHH among 13 European ant species. We report clear metabolic compensation effects, consistent with the MCA and MHH, where MR parameters strongly correlated with latitude and climatic factors across species' distributions. The combination of both cold tolerance and MRs further upheld the best predictions of species' environmental temperatures and limits of northernmost distribution. To our knowledge, this is the first study showing that the association of metabolic data with cold tolerance supports better predictive models of species' climate and distribution in social insects than models including cold tolerance alone. These results also highlight that adaptation to higher latitudes in ants involved adjustments of both cold tolerance and MRs, to allow this extremely successful group of insects to thrive under colder climates.


Assuntos
Formigas , Formigas/classificação , Formigas/fisiologia , Temperatura Baixa , Filogenia , Metabolismo Energético , Geografia , Adaptação Fisiológica
3.
J Nutr ; 153(2): 493-504, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36894241

RESUMO

BACKGROUND: Leucine increases protein synthesis rates in postnatal animals and adults. Whether supplemental leucine has similar effects in the fetus has not been determined. OBJECTIVE: To determine the effect of a chronic leucine infusion on whole-body leucine oxidation and protein metabolic rates, muscle mass, and regulators of muscle protein synthesis in late gestation fetal sheep. METHODS: Catheterized fetal sheep at ∼126 d of gestation (term = 147 d) received infusions of saline (CON, n = 11) or leucine (LEU; n = 9) adjusted to increase fetal plasma leucine concentrations by 50%-100% for 9 d. Umbilical substrate net uptake rates and protein metabolic rates were determined using a 1-13C leucine tracer. Myofiber myosin heavy chain (MHC) type and area, expression of amino acid transporters, and abundance of protein synthesis regulators were measured in fetal skeletal muscle. Groups were compared using unpaired t tests. RESULTS: Plasma leucine concentrations were 75% higher in LEU fetuses compared with CON by the end of the infusion period (P < 0.0001). Umbilical blood flow and uptake rates of most amino acids, lactate, and oxygen were similar between groups. Fetal whole-body leucine oxidation was 90% higher in LEU (P < 0.0005) but protein synthesis and breakdown rates were similar. Fetal and muscle weights and myofiber areas were similar between groups, however, there were fewer MHC type IIa fibers (P < 0.05), greater mRNA expression levels of amino acid transporters (P < 0.01), and a higher abundance of signaling proteins that regulate protein synthesis (P < 0.05) in muscle from LEU fetuses. CONCLUSIONS: A direct leucine infusion for 9 d in late gestation fetal sheep does not increase protein synthesis rates but results in higher leucine oxidation rates and fewer glycolytic myofibers. Increasing leucine concentrations in the fetus stimulates its own oxidation but also increases amino acid transporter expression and primes protein synthetic pathways in skeletal muscle.


Assuntos
Aminoácidos , Feto , Gravidez , Ovinos , Animais , Feminino , Leucina/farmacologia , Leucina/metabolismo , Aminoácidos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo
4.
Oecologia ; 201(3): 637-648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36894790

RESUMO

Understanding the consequences of heat exposure on mitochondrial function is crucial as mitochondria lie at the core of metabolic processes, also affecting population dynamics. In adults, mitochondrial metabolism varies with temperature but can also depend on thermal conditions experienced during development. We exposed zebra finches to two alternative heat treatments during early development: "constant", maintained birds at ambient 35 °C from parental pair formation to fledglings' independence, while "periodic" heated broods at 40 °C, 6 h daily at nestling stage. Two years later, we acclimated birds from both experiments at 25 °C for 21 days, before exposing them to artificial heat (40 °C, 5 h daily for 10 days). After both conditions, we measured red blood cells' mitochondrial metabolism using a high-resolution respirometer. We found significantly decreased mitochondrial metabolism for Routine, Oxidative Phosphorylation (OxPhos) and Electron Transport System maximum capacity (ETS) after the heat treatments. In addition, the birds exposed to "constant" heat in early life showed lower oxygen consumption at the Proton Leak (Leak) stage after the heat treatment as adults. Females showed higher mitochondrial respiration for Routine, ETS and Leak independent of the treatments, while this pattern was reversed for OxPhos coupling efficiency (OxCE). Our results show that short-term acclimation involved reduced mitochondrial respiration, and that the reaction of adult birds to heat depends on the intensity, pattern and duration of temperature conditions experienced at early-life stages. Our study provides insight into the complexity underlying variation in mitochondrial metabolism and raises questions on the adaptive value of long-lasting physiological adjustments triggered by the early-life thermal environment.


Assuntos
Tentilhões , Temperatura Alta , Animais , Feminino , Mitocôndrias/metabolismo , Temperatura , Aclimatação/fisiologia , Tentilhões/fisiologia
5.
J Therm Biol ; 118: 103748, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984051

RESUMO

Understanding how birds annually allocate energy to cope with changing environmental conditions and physiological states is a crucial question in avian ecology. There are several hypotheses to explain species' energy allocation. One prominent hypothesis suggests higher energy expenditure in winter due to increased thermoregulatory costs. The "reallocation" hypothesis suggests no net difference in seasonal energy requirements, while the "increased demand" hypothesis predicts higher energy requirements during the breeding season. Birds are expected to adjust their mass and/or metabolic intensity in ways that are consistent with their energy requirements. Here, we look for metabolic signatures of seasonal variation in energy requirements of a resident passerine of a temperate-zone (great tit, Parus major). To do so, we measured whole-body and mass-independent basal (BMR), summit (Msum), and field (FMR) metabolic rates during late winter and during breeding in Belgian great tits. During the breeding season, birds had on average 10% higher whole-body BMR and FMR compared to winter, while their Msum decreased by 7% from winter to breeding. Mass-independent metabolic rates showed a 10% increase in BMR and a 7% decrease in Msum from winter to breeding. Whole-body BMR was correlated with Msum, but this relationship did not hold for mass-independent metabolic rates. The modest seasonal change we observed suggests that great tits in our temperature study area maintain a largely stable energy budget throughout the year, which appears mostly consistent with the reallocation hypothesis.


Assuntos
Clima , Passeriformes , Animais , Estações do Ano , Metabolismo Energético/fisiologia , Passeriformes/fisiologia , Temperatura , Metabolismo Basal/fisiologia
6.
J Therm Biol ; 115: 103565, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393847

RESUMO

Thermodynamics is a major factor determining rates of energy expenditure, rates of biochemical dynamics, and ultimately the biological and ecological processes linked with resilience to global warming in ectothermic organisms. Nonetheless, whether ectothermic organisms exhibit general adaptive metabolic responses to cope with worldwide variation in thermal conditions has remained as an open question. Here we combine a model comparison approach with a global dataset of standard metabolic rates (SMR), including 1,160 measurements across 788 species of aquatic invertebrates, insects, fishes, amphibians and reptiles, to investigate the association between metabolic rates and environmental temperatures in their respective habitats. Our analyses suggest that variation in SMR after removing allometric and thermodynamic effects is best explained by the temperature range encountered across seasons, which always provided a better fit than the average temperature for the hottest and coldest month and mean annual temperatures. This pattern was consistent across taxonomic groups and robust to sensitivity analyses. Nonetheless, aquatic and terrestrial lineages responded differently to seasonality, with SMR declining - 6.8% °C-1 of thermal range across seasons in aquatic organisms and increasing 2.8% °C-1 in terrestrial organisms. These responses may reflect alternative strategies to mitigate the impact of increments in warmer temperatures on energy expenditure, either by means of metabolic reduction in thermally homogeneous water bodies or effective behavioral thermoregulation to exploit temperature heterogeneity on land.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal , Animais , Temperatura , Regulação da Temperatura Corporal/fisiologia , Aclimatação , Temperatura Baixa
7.
J Exp Biol ; 225(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36004671

RESUMO

Like all taxa, populations of aquatic insects may respond to climate change by evolving new physiologies or behaviors, shifting their range, exhibiting physiological and behavioral plasticity, or going extinct. We evaluated the importance of plasticity by measuring changes in growth, survival and respiratory phenotypes of salmonfly nymphs (the stonefly Pteronarcys californica) in response to experimental combinations of dissolved oxygen and temperature. Overall, smaller individuals grew more rapidly during the 6-week experimental period, and oxygen and temperature interacted to affect growth in complex ways. Survival was lower for the warm treatment, although only four mortalities occurred (91.6% versus 100%). Nymphs acclimated to warmer temperatures did not have higher critical thermal maxima (CTmax), but those acclimated to hypoxia had CTmax values (in normoxia) that were higher by approximately 1°C. These results suggest possible adaptive plasticity of systems for taking up or delivering oxygen. We examined these possibilities by measuring the oxygen sensitivity of metabolic rates and the morphologies of tracheal gill tufts located ventrally on thoracic segments. Mass-specific metabolic rates of individuals acclimated to warmer temperatures were higher in acute hypoxia but lower in normoxia, regardless of their recent history of oxygen exposure during acclimation. The morphology of gill filaments, however, changed in ways that appeared to depress rates of oxygen delivery in functional hypoxia. Our combined results from multiple performance metrics indicate that rising temperatures and hypoxia may interact to magnify the risks to aquatic insects, but that physiological plasticity in respiratory phenotypes may offset some of these risks.


Assuntos
Insetos , Oxigênio , Aclimatação/fisiologia , Animais , Hipóxia , Insetos/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Fenótipo , Temperatura
8.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156125

RESUMO

Forage fish tend to respond strongly to environmental variability and therefore may be particularly sensitive to marine climate stressors. We used controlled laboratory experiments to assess the vulnerability of Pacific herring (Clupea pallasii) embryos to the combined effects of high partial pressure of carbon dioxide (PCO2) and a simulated marine heatwave. The two PCO2 treatments reflected current conditions (∼550 µatm) and a future extreme level (∼2300 µatm). The dynamics of the heatwave (i.e. rate of onset: ∼0.85°C day-1; maximum intensity: +4.4°C) were modeled from the most extreme events detected by a long-term regional temperature dataset. Simultaneous exposure to these potential stressors did not affect embryo survival. However, the heatwave did elicit significant metabolic effects that included higher rates of routine metabolism (Q10=1.15-1.72), growth (Q10=1.87), rate of development to hatch (Q10=3.01) and yolk consumption (Q10=3.21), as well as a significant reduction in production efficiency (-10.8%) and a three-fold increase in the rate of developmental anomalies. By contrast, high PCO2 conditions produced comparatively small effects on vital rates, including a significant increase in time to hatch (+0.88 days) and a reduction in routine metabolic rate (-6.3%) under the ambient temperature regime only. We found no evidence that high PCO2 increased routine metabolic rate at either temperature. These results indicate that Pacific herring embryos possess sufficient physiological plasticity to cope with extreme seawater acidification under optimal and heatwave temperature conditions, although lingering metabolic inefficiencies induced by the heatwave may lead to important carryover effects in later life stages.


Assuntos
Peixes , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Temperatura
9.
J Exp Biol ; 224(11): 1-6, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060605

RESUMO

Endotherms at high altitude face the combined challenges of cold and hypoxia. Cold increases thermoregulatory costs, and hypoxia may limit both thermogenesis and aerobic exercise capacity. Consequently, in comparisons between closely related highland and lowland taxa, we might expect to observe consistent differences in basal metabolic rate (BMR), maximal metabolic rate (MMR) and aerobic scope. Broad-scale comparative studies of birds reveal no association between BMR and native elevation, and altitude effects on MMR have not been investigated. We tested for altitude-related variation in aerobic metabolism in 10 Andean passerines representing five pairs of closely related species with contrasting elevational ranges. Mass-corrected BMR and MMR were significantly higher in most highland species relative to their lowland counterparts, but there was no uniform elevational trend across all pairs of species. Our results suggest that there is no simple explanation regarding the ecological and physiological causes of elevational variation in aerobic metabolism.


Assuntos
Altitude , Metabolismo Basal , Regulação da Temperatura Corporal , Respiração Celular , Termogênese
10.
J Exp Biol ; 224(Pt 1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33257437

RESUMO

Being composed of small cells may carry energetic costs related to maintaining ionic gradients across cell membranes as well as benefits related to diffusive oxygen uptake. Here, we test the hypothesis that these costs and benefits of cell size in ectotherms are temperature dependent. To study the consequences of cell size for whole-organism metabolic rate, we compared diploid and triploid zebrafish larvae differing in cell size. A fully factorial design was applied combining three different rearing and test temperatures that allowed us to distinguish acute from acclimated thermal effects. Individual oxygen consumption rates of diploid and triploid larvae across declining levels of oxygen availability were measured. We found that both acute and acclimated thermal effects affected the metabolic response. In comparison with triploids, diploids responded more strongly to acute temperatures, especially when reared at the highest temperature. These observations support the hypothesis that animals composed of smaller cells (i.e. diploids) are less vulnerable to oxygen limitation in warm aquatic habitats. Furthermore, we found slightly improved hypoxia tolerance in diploids. By contrast, warm-reared triploids had higher metabolic rates when they were tested at acute cold temperature, suggesting that being composed of larger cells may provide metabolic advantages in the cold. We offer two mechanisms as a potential explanation of this result, related to homeoviscous adaptation of membrane function and the mitigation of developmental noise. Our results suggest that being composed of larger cells provides metabolic advantages in cold water, while being composed of smaller cells provides metabolic advantages in warm water.


Assuntos
Diploide , Triploidia , Animais , Tamanho Celular , Larva , Peixe-Zebra/genética
11.
Biogerontology ; 21(2): 133-142, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31654315

RESUMO

Age-related deterioration of physiological functions is one of the most evident manifestations of ageing. In wild populations of some species, including murid rodents, lifespans are substantially modified by environmental signals that affect an individual's response to such challenges as unfavourable climatic conditions, parasitic load etc. But the real impact of ageing on natural mortality of most species remains obscure. To clarify how age affects the responsiveness of organisms to environmental challenges, we performed longitudinal laboratory observations of wild-derived northern red-backed voles (Myodes rutilus). We fixed individual longevity and measured metabolic indexes (basal and maximal metabolic rates), ability to maintain body temperature under acute cooling, plasma corticosterone, indexes of acquired and innate immunity in the same individuals of 3-4, 6-7 and 9-10 months old. The maximum estimated lifespan was about 2 years 8 months, which is considerably older than in nature, but less than 30% of individuals passed the one-year milestone. Regardless of the intense mortality, in the first year of life, animals did not demonstrate any age-related deterioration in physiological functions, except leucocyte number. No consistency in any individual physiological index was found. As the individual longevity of red-backed voles varied between years of captivity, we suggest that the welfare and lifespan of wild animals in captivity may be affected by the environmental conditions in the period preceding removal of the animal from the wild.


Assuntos
Envelhecimento/fisiologia , Arvicolinae/fisiologia , Longevidade , Imunidade Adaptativa , Fatores Etários , Animais , Regulação da Temperatura Corporal , Corticosterona/sangue , Metabolismo Energético , Feminino , Imunidade Inata , Masculino , Especificidade da Espécie
12.
J Phycol ; 56(3): 818-829, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32130730

RESUMO

Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.


Assuntos
Fotossíntese , Synechococcus , Clorofila A , Luz , Nutrientes , Complexo de Proteína do Fotossistema II/metabolismo , Alocação de Recursos , Synechococcus/metabolismo , Temperatura
13.
Neurol Sci ; 41(1): 75-82, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31422504

RESUMO

In this study, we used event-related potential (ERP) and 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) to study the neural correlates of different behavioral response to transcranial direct current stimulation (tDCS) between patients in unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). Thirteen patients (eight in UWS and five in MCS) underwent 20 anodal tDCS sessions of the left dorsolateral prefrontal cortex (DLPFC). Before tDCS, all the patients and six age-matched healthy subjects underwent a cerebral FDG-PET scan and ERP test. The coma recovery scale-revised (CRS-R) results revealed that after tDCS, a significant improvement was observed only in the MCS group. The ERP results supported that MCS patients preserved more high-order cortical information processing capacities. The residual brain metabolism in the left DLPFC in MCS patients supported that a residual brain activity in the stimulated area was necessary for a behavioral response to tDCS. Our study also demonstrated that the cerebral metabolic rates of glucose (CMRgl) ratios in intrinsic network were correlated significantly with CRS-R in MCS patients. In addition, the right prefrontal region might be another potential therapeutic target for MCS patients.


Assuntos
Encéfalo/diagnóstico por imagem , Estado Vegetativo Persistente/diagnóstico por imagem , Estado Vegetativo Persistente/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Vigília/fisiologia , Adulto , Idoso , Encéfalo/metabolismo , Estudos de Coortes , Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/metabolismo , Transtornos da Consciência/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Vegetativo Persistente/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Síndrome
14.
J Fish Biol ; 97(3): 794-803, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557687

RESUMO

The present study determined the effect of body mass and acclimation temperature (15-28°C) on oxygen consumption rate (MO2 ) and the size dependency of preferred temperature in European perch Perca fluviatilis. Standard metabolic rate (SMR) scaled allometrically with body mass by an exponent of 0.86, and temperature influenced SMR with a Q10 of 1.9 regardless of size. Maximum metabolic rate (MMR) and aerobic scope (MMR-SMR) scaled allometrically with body mass by exponents of 0.75-0.88. The mass scaling exponents of MMR and aerobic scope changed with temperature and were lowest at the highest temperature. Consequently, the optimal temperature for aerobic scope decreased with increasing body mass. Notably, fish <40 g did not show a decrease aerobic scope with increasing temperature. Factorial aerobic scope (MMR × SMR-1 ) generally decreased with increasing temperatures, was unaffected by size at the lower temperatures, and scaled negatively with body mass at the highest temperature. Similar to the optimal temperature for aerobic scope, preferred temperature declined with increasing body mass, unaffectedly by acclimation temperature. The present study indicates a limitation in the capacity for oxygen uptake in larger fish at high temperatures. A constraint in oxygen uptake at high temperature may restrict the growth of larger fish with environmental warming, at least if food availability is not limited. Furthermore, behavioural thermoregulation may be contributing to regional changes in the size distribution of fish in the wild caused by global warming as larger individuals will prefer colder water at higher latitudes and at larger depths than smaller conspecifics with increasing environmental temperatures.


Assuntos
Tamanho Corporal , Consumo de Oxigênio/fisiologia , Percas/metabolismo , Temperatura , Aclimatação , Animais , Aquecimento Global
15.
Mol Ecol ; 26(19): 5086-5098, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742928

RESUMO

Mitochondrial genomes can be assembled readily from shotgun-sequenced DNA mixtures of mass-trapped arthropods ("mitochondrial metagenomics"), speeding up the taxonomic characterization. Bulk sequencing was conducted on some 800 individuals of Diptera obtained by canopy fogging of a single tree in Borneo dominated by small (<1.5 mm) individuals. Specimens were split into five body size classes for DNA extraction, to equalize read numbers across specimens and to study how body size, a key ecological trait, interacts with species and phylogenetic diversity. Genome assembly produced 304 orthologous mitochondrial contigs presumed to each represent a different species. The small-bodied fraction was the by far most species-rich (187 contigs). Identification of contigs was through phylogenetic analysis together with 56 reference mitogenomes, which placed most of the Bornean community into seven clades of small-bodied species, indicating phylogenetic conservation of body size. Mapping of shotgun reads against the mitogenomes showed wide ranges of read abundances within each size class. Ranked read abundance plots were largely log-linear, indicating a uniformly filled abundance spectrum, especially for small-bodied species. Small-bodied species differed greatly from other size classes in neutral metacommunity parameters, exhibiting greater levels of immigration, besides greater total community size. We suggest that the established uses of mitochondrial metagenomics for analysis of species and phylogenetic diversity can be extended to parameterize recent theories of community ecology and biodiversity, and by focusing on the number mitochondria, rather than individuals, a new theoretical framework for analysis of mitochondrial abundance spectra can be developed that incorporates metabolic activity approximated by the count of mitochondria.


Assuntos
Tamanho Corporal , Dípteros/classificação , Genoma Mitocondrial , Filogenia , Animais , Bornéu , Mapeamento de Sequências Contíguas , DNA Mitocondrial/genética , Dípteros/anatomia & histologia , Análise de Sequência de DNA
16.
Indoor Air ; 27(2): 261-272, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485255

RESUMO

Local thermal sensation modeling gained importance due to developments in personalized and locally applied heating and cooling systems in office environments. The accuracy of these models depends on skin temperature prediction by thermophysiological models, which in turn rely on accurate environmental and personal input data. Environmental parameters are measured or prescribed, but personal factors such as clothing properties and metabolic rates have to be estimated. Data for estimating the overall values of clothing properties and metabolic rates are available in several papers and standards. However, local values are more difficult to retrieve. For local clothing, this study revealed that full and consistent data sets are not available in the published literature for typical office clothing sets. Furthermore, the values for local heat production were not verified for characteristic office activities, but were adapted empirically. Further analyses showed that variations in input parameters can lead to local skin temperature differences (∆Tskin,loc  = 0.4-4.4°C). These differences can affect the local sensation output, where ∆Tskin,loc  = 1°C is approximately one step on a 9-point thermal sensation scale. In conclusion, future research should include a systematic study of local clothing properties and the development of feasible methods for measuring and validating local heat production.


Assuntos
Regulação da Temperatura Corporal , Vestuário , Temperatura Cutânea , Sensação Térmica , Humanos , Local de Trabalho
17.
Artigo em Inglês | MEDLINE | ID: mdl-27769910

RESUMO

Recent reports indicate that field metabolic rates (FMRs) of mammals conform to a pattern of complex allometry in which the exponent in a simple, two-parameter power equation increases steadily as a dependent function of body mass. The reports were based, however, on indirect analyses performed on logarithmic transformations of the original data. I re-examined values for FMR and body mass for 114 species of mammal by the conventional approach to allometric analysis (to illustrate why the approach is unreliable) and by linear and nonlinear regression on untransformed variables (to illustrate the power and versatility of newer analytical methods). The best of the regression models fitted directly to untransformed observations is a three-parameter power equation with multiplicative, lognormal, heteroscedastic error and an allometric exponent of 0.82. The mean function is a good fit to data in graphical display. The significant intercept in the model may simply have gone undetected in prior analyses because conventional allometry assumes implicitly that the intercept is zero; or the intercept may be a spurious finding resulting from bias introduced by the haphazard sampling that underlies "exploratory" analyses like the one reported here. The aforementioned issues can be resolved only by gathering new data specifically intended to address the question of scaling of FMR with body mass in mammals. However, there is no support for the concept of complex allometry in the relationship between FMR and body size in mammals.


Assuntos
Animais Selvagens/fisiologia , Metabolismo Energético , Mamíferos/fisiologia , Modelos Biológicos , Algoritmos , Animais , Animais Selvagens/crescimento & desenvolvimento , Tamanho Corporal , Bases de Dados Factuais , Mamíferos/crescimento & desenvolvimento , Especificidade da Espécie , Estatística como Assunto
18.
Artigo em Inglês | MEDLINE | ID: mdl-28179141

RESUMO

Understanding how evolutionary variation in energetic metabolism arises is central to several theories in animal biology. Basal metabolic rate (BMR) -i.e., the minimum rate of energy necessary to maintain thermal homeostasis in endotherms- is a highly informative measure to increase our understanding, because it is determined under highly standardized conditions. In this study we evaluate the relationship between taxa- and mass-independent (residual) BMR and ten environmental factors for 34 subterranean rodent species. Both conventional and phylogenetically informed analyses indicate that ambient temperature is the major determinant of residual BMR, with both variables inversely correlated. By contrast, other environmental factors that have been shown to affect residual BMR in endotherms, such as habitat productivity and rainfall, were not significant predictors of residual BMR in this group of species. Then, the results for subterranean rodents appear to support a central prediction of the obligatory heat model (OHM), which is a mechanistic model aimed to explain the evolution of residual BMR. Specifically, OHM proposes that during the colonization of colder environments, individuals with greater masses of metabolically expensive tissues (and thus with greater BMR) are favored by natural selection due to the link between greater masses of metabolically expensive tissues and physiological capacities. This way, natural selection should establishes a negative correlation between ambient temperature and both internal organ size and residual BMR.


Assuntos
Evolução Biológica , Metabolismo Energético , Modelos Biológicos , Roedores/fisiologia , Aclimatação , Altitude , Distribuição Animal , Animais , Metabolismo Basal , Comportamento Animal , Regulação da Temperatura Corporal , Peso Corporal , Clima , Feminino , Masculino , Tamanho do Órgão , Filogenia , Roedores/crescimento & desenvolvimento , Estações do Ano , Especificidade da Espécie , Vísceras/crescimento & desenvolvimento
19.
Hum Brain Mapp ; 37(8): 2823-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27061859

RESUMO

High plasma glucose (PG) levels can reduce fluorine-18-labeled fluorodeoxyglucose ((18) F-FDG) uptake, especially in the Alzheimer's disease (AD)-related regions. This fact is supported by studies showing that the resting-state activity in diabetes can be altered in the default mode network (DMN)-related regions, which considerably overlap with the AD-related regions. In order to expand the current knowledge, we aimed to investigate the relationship between increasing PG levels and the regional cerebral metabolic rates for glucose (CMRglc ) as a direct index of brain activity. We performed dynamic (18) F-FDG positron emission tomography with arterial blood sampling once each in the fasting and glucose-loading conditions on 12 young, healthy volunteers without cognitive impairment or insulin resistance. The absolute CMRglc values were calculated for the volume-of-interest (VOI) analysis, and normalized CMRglc maps were generated for the voxelwise analysis. The normalized measurement is known to have smaller intersubject variability than the absolute measurement, and may, thus, lead to greater statistical power. In VOI analysis, no regional difference in the CMRglc was found between the two conditions. In exploratory voxelwise analysis, however, significant clusters were identified in the precuneus, posterior cingulate, lateral parietotemporal, and medial prefrontal regions where the CMRglc decreased upon glucose loading (P < 0.05, corrected). These regions include the representative components of both the DMN and AD pathology. Taken together with the previous knowledge on the relationships between the DMN, AD, and diabetes, it may be inferred that glucose loading induces hypometabolism in the AD-related and DMN-related regions. Hum Brain Mapp 37:2823-2832, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Córtex Cerebral/metabolismo , Glucose/metabolismo , Adulto , Feminino , Fluordesoxiglucose F18 , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Adulto Jovem
20.
J Fish Biol ; 88(1): 433-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768980

RESUMO

The effect of trophic exposure to pyrolitic polycyclic aromatic hydrocarbons (PAH) on aerobic metabolism of zebrafish Danio rerio was investigated. There were no significant differences in standard metabolic rate (SMR), active metabolic rate (AMR) or aerobic metabolic scope (AS) at any sublethal concentration of PAH in the diet of adult or juvenile fish. This suggests that under these experimental conditions, exposure to PAH in food did not influence aerobic metabolism of this species.


Assuntos
Exposição Ambiental/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Poluentes da Água/efeitos adversos , Peixe-Zebra/metabolismo , Animais , Metabolismo Energético , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA