Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.752
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38851188

RESUMO

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.

2.
Cell ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38851187

RESUMO

We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.

3.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181745

RESUMO

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Assuntos
DNA Mitocondrial , Efetores Semelhantes a Ativadores de Transcrição , Animais , Humanos , Camundongos , Adenina , Citosina , DNA Mitocondrial/genética , Edição de Genes , RNA , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Engenharia de Proteínas
4.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36827974

RESUMO

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Assuntos
Mitocôndrias , Organogênese , Animais , Feminino , Humanos , Camundongos , Gravidez , Linhagem da Célula , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , Especificidade de Órgãos , Desenvolvimento Embrionário , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo
5.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35662414

RESUMO

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Assuntos
DNA Mitocondrial , Proteínas Mitocondriais , Animais , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA/metabolismo , RNA Mitocondrial , RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Transcrição Gênica
6.
Cell ; 176(6): 1325-1339.e22, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827679

RESUMO

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Sequência de Bases , Linhagem da Célula , Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica/métodos , Células HEK293 , Células-Tronco Hematopoéticas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Análise de Célula Única , Transposases
7.
Annu Rev Biochem ; 85: 133-60, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27023847

RESUMO

Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , Transcrição Gênica , Animais , Evolução Biológica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Replicação do DNA , DNA Mitocondrial/metabolismo , Transporte de Elétrons/genética , Regulação da Expressão Gênica , Mamíferos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , Fosforilação Oxidativa , Transporte Proteico , Transdução de Sinais
9.
Immunity ; 55(8): 1370-1385.e8, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835107

RESUMO

Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1ß (IL-1ß) production and mtDNA release in mice.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , Interferons/metabolismo , Camundongos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/metabolismo
10.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768893

RESUMO

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Assuntos
Metabolismo Energético/genética , Epigênese Genética , Histona Acetiltransferases/metabolismo , Mitocôndrias Musculares/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Cardiomiopatia Hipertrófica/genética , Respiração Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HeLa , Insuficiência Cardíaca/genética , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/genética
11.
Mol Cell ; 83(10): 1710-1724.e7, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37141888

RESUMO

Bacterial double-stranded DNA (dsDNA) cytosine deaminase DddAtox-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddAtox) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddAtox, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddAtox- or riDddAtox-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.5- and 1.7-fold, respectively. We also used riDddAtox-based and Rta-assisted mitoCBE to efficiently stimulate disease-associated mtDNA mutations in cultured cells and in mouse embryos with conversion frequencies of up to 58% at non-TC targets.


Assuntos
Edição de Genes , Transativadores , Camundongos , Animais , Transativadores/metabolismo , Citosina , Mutação , DNA Mitocondrial/genética , Sistemas CRISPR-Cas
12.
Mol Cell ; 82(19): 3646-3660.e9, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044900

RESUMO

The human mitochondrial genome must be replicated and expressed in a timely manner to maintain energy metabolism and supply cells with adequate levels of adenosine triphosphate. Central to this process is the idea that replication primers and gene products both arise via transcription from a single light strand promoter (LSP) such that primer formation can influence gene expression, with no consensus as to how this is regulated. Here, we report the discovery of a second light strand promoter (LSP2) in humans, with features characteristic of a bona fide mitochondrial promoter. We propose that the position of LSP2 on the mitochondrial genome allows replication and gene expression to be orchestrated from two distinct sites, which expands our long-held understanding of mitochondrial gene expression in humans.


Assuntos
Genoma Mitocondrial , Trifosfato de Adenosina/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transcrição Gênica
13.
Annu Rev Cell Dev Biol ; 30: 357-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288115

RESUMO

Mitochondria are ancient organelles evolved from bacteria. Over the course of evolution, the behavior of mitochondria inside eukaryotic cells has changed dramatically, and the corresponding machineries that control it are in most cases new inventions. The evolution of mitochondrial behavior reflects the necessity to create a dynamic compartment to integrate the myriad mitochondrial functions with the status of other endomembrane compartments, such as the endoplasmic reticulum, and with signaling pathways that monitor cellular homeostasis and respond to stress. Here we review what has been discovered about the molecular machineries that work together to control the collective behavior of mitochondria in cells, as well as their physiological roles in healthy and disease states.


Assuntos
Mitocôndrias/fisiologia , Renovação Mitocondrial/fisiologia , Animais , DNA Mitocondrial/metabolismo , Dinaminas/fisiologia , Retículo Endoplasmático/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Homeostase , Humanos , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/fisiologia , Doenças Mitocondriais/fisiopatologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Conformação Proteica , Transdução de Sinais/fisiologia
14.
Trends Genet ; 40(2): 112-114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38036338

RESUMO

Mitochondrial DNA (mtDNA) is inherited almost exclusively from the maternal lineage. Paternal destruction of either mtDNA or whole mitochondria has been the dominant model for mtDNA transmission. Recently, Lee et al. provided evidence for mitochondrial transcription factor A (TFAM) import sequence regulation as a potential cause for mtDNA depletion in human sperm before fertilization.


Assuntos
Sêmen , Espermatogênese , Masculino , Humanos , Espermatogênese/genética , Espermatozoides/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
15.
Mol Cell ; 76(5): 784-796.e6, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31588022

RESUMO

Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.


Assuntos
Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Exorribonucleases/metabolismo , Mitocôndrias/enzimologia , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mitocondrial/metabolismo , Proteínas 14-3-3/deficiência , Proteínas 14-3-3/genética , Animais , Biomarcadores Tumorais/genética , Exorribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mitocondrial/genética , Células Sf9 , Spodoptera
16.
Mol Cell ; 73(6): 1127-1137.e5, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30772175

RESUMO

We have previously proposed that selective inheritance, the limited transmission of damaging mtDNA mutations from mother to offspring, is based on replication competition in Drosophila melanogaster. This model, which stems from our observation that wild-type mitochondria propagate much more vigorously in the fly ovary than mitochondria carrying fitness-impairing mutations, implies that germ cells recognize the fitness of individual mitochondria and selectively boost the propagation of healthy ones. Here, we demonstrate that the protein kinase PINK1 preferentially accumulates on mitochondria enriched for a deleterious mtDNA mutation. PINK1 phosphorylates Larp to inhibit protein synthesis on the mitochondrial outer membrane. Impaired local translation on defective mitochondria in turn limits the replication of their mtDNA and hence the transmission of deleterious mutations to the offspring. Our work confirms that selective inheritance occurs at the organelle level during Drosophila oogenesis and provides molecular entry points to test this model in other systems.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/biossíntese , Mutação , Oócitos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , DNA Mitocondrial/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Padrões de Herança , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Oogênese , Biogênese de Organelas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Semin Immunol ; 69: 101808, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473558

RESUMO

Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.


Assuntos
Mitocôndrias , Linfócitos T , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Envelhecimento/genética , Senescência Celular
18.
Proc Natl Acad Sci U S A ; 121(10): e2317240121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427600

RESUMO

Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Animais , DNA de Plantas/genética , Variações do Número de Cópias de DNA/genética , Filogenia , DNA Mitocondrial/genética , Plantas/genética
19.
Semin Cell Dev Biol ; 159-160: 52-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330625

RESUMO

Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.


Assuntos
Dinâmica Mitocondrial , Oócitos , Gravidez , Animais , Feminino , Humanos , Idoso , Mitocôndrias/metabolismo , Desenvolvimento Embrionário , DNA Mitocondrial/metabolismo
20.
Semin Cell Dev Biol ; 156: 253-265, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043948

RESUMO

Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Animais , Mitocôndrias/metabolismo , Plantas/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA