Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(45): e2218499120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37910552

RESUMO

A hyperdiverse class of pathogens of humans and wildlife, including the malaria parasite Plasmodium falciparum, relies on multigene families to encode antigenic variation. As a result, high (asymptomatic) prevalence is observed despite high immunity in local populations under high-transmission settings. The vast diversity of "strains" and genes encoding this variation challenges the application of established models for the population dynamics of such infectious diseases. Agent-based models have been formulated to address theory on strain coexistence and structure, but their complexity can limit application to gain insights into population dynamics. Motivated by P. falciparum malaria, we develop an alternative formulation in the form of a structured susceptible-infected-susceptible population model in continuous time, where individuals are classified not only by age, as is standard, but also by the diversity of parasites they have been exposed to and retain in their specific immune memory. We analyze the population dynamics and bifurcation structure of this system of partial-differential equations, showing the existence of alternative steady states and an associated tipping point with transmission intensity. We attribute the critical transition to the positive feedback between parasite genetic diversity and force of infection. Basins of attraction show that intervention must drastically reduce diversity to prevent a rebound to high infection levels. Results emphasize the importance of explicitly considering pathogen diversity and associated specific immune memory in the population dynamics of hyperdiverse epidemiological systems. This statement is discussed in a more general context for ecological competition systems with hyperdiverse trait spaces.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Modelos Epidemiológicos , Memória Imunológica , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Variação Genética
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38649162

RESUMO

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Assuntos
Evolução Molecular , Família Multigênica , Filogenia , Receptores Odorantes , Roedores , Órgão Vomeronasal , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Roedores/genética , Olfato/genética , Paladar/genética , Órgão Vomeronasal/metabolismo
3.
J Mol Evol ; 91(6): 897-911, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38017120

RESUMO

Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.


Assuntos
Parasitos , Theileria parva , Theileria , Animais , Theileria/genética , Parasitos/genética , Theileria parva/genética , Família Multigênica/genética , Cromossomos
4.
J Virol ; 96(6): e0189921, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044212

RESUMO

African swine fever virus multigene family (MGF) 360 and 505 genes have roles in suppressing the type I interferon response and in virulence in pigs. The role of the individual genes is poorly understood. Different combinations of these genes were deleted from the virulent genotype II Georgia 2007/1 isolate. Deletion of five copies of MGF 360 genes, MGF360-10L, -11L, -12L, -13L, and -14L, and three copies of MGF505-1R, -2R, and -3R reduced virus replication in macrophages and attenuated virus in pigs. However, only 25% of the immunized pigs were protected against challenge. Deletion of MGF360-12L, -13L, and -14L and MGF505-1R in combination with a negative serology marker, K145R (GeorgiaΔK145RΔMGF(A)), reduced virus replication in macrophages and virulence in pigs, since no clinical signs or virus genome in blood were observed following immunization. Four of six pigs were protected after challenge. In contrast, deletion of MGF360-13L and -14L, MGF505-2R and -3R, and K145R (GeorgiaΔK145RΔMGF(B)) did not reduce virus replication in macrophages. Following immunization of pigs, clinical signs were delayed, but all pigs reached the humane endpoint. Deletion of genes MGF360-12L, MGF505-1R, and K145R reduced replication in macrophages and attenuated virulence in pigs since no clinical signs or virus genome in blood were observed following immunization. Thus, the deletion of MGF360-12L and MGF505-1R, in combination with K145R, was sufficient to dramatically attenuate virus infection in pigs. However, only two of six pigs were protected, suggesting that deletion of additional MGF genes is required to induce a protective immune response. Deletion of MGF360-12L, but not MGF505-1R, from the GeorgiaΔK145R virus reduced virus replication in macrophages, indicating that MGF360-12L was most critical for maintaining high levels of virus replication in macrophages. IMPORTANCE African swine fever has a high socioeconomic impact and no vaccines to aid control. The African swine fever virus (ASFV) has many genes that inhibit the host's interferon response. These include related genes that are grouped into multigene families, including MGF360 and 505. Here, we investigated which MGF360 and 505 genes were most important for viral attenuation and protection against genotype II strains circulating in Europe and Asia. We compared viruses with deletions of MGF genes. Deletion of just two MGF genes in combination with a third gene, K145R, a possible marker for vaccination, is sufficient for virus attenuation in pigs. Deletion of additional MGF360 genes was required to induce higher levels of protection. Furthermore, we showed that the deletion of MGF360-12L, combined with K145R, impairs virus replication in macrophages in culture. Our results have important implications for understanding the roles of the ASFV MGF genes and for vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Vacinas Virais , Virulência , Replicação Viral , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Deleção de Genes , Genótipo , Macrófagos/virologia , Família Multigênica/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Replicação Viral/genética
5.
Biochem Cell Biol ; 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35580352

RESUMO

The discovery of radically different antifreeze proteins (AFPs) in fishes during the 1970s and 1980s suggested that these proteins had recently and independently evolved to protect teleosts from freezing in icy seawater. Early forays into the isolation and characterization of AFP genes in these fish showed they were massively amplified, often in long tandem repeats. The work of many labs in the 1980s onward led to the discovery and characterization of AFPs in other kingdoms, such as insects, plants, and many different microorganisms. The distinct ice-binding property that these ice-binding proteins (IBPs) share has facilitated their purification through adsorption to ice, and the ability to produce recombinant versions of IBPs has enabled their structural characterization and the mapping of their ice-binding sites (IBSs) using site-directed mutagenesis. One hypothesis for their ice affinity is that the IBS organizes surface waters into an ice-like pattern that freezes the protein onto ice. With access now to a rapidly expanding database of genomic sequences, it has been possible to trace the origins of some fish AFPs through the process of gene duplication and divergence, and to even show the horizontal transfer of an AFP gene from one species to another.

6.
Crit Rev Biotechnol ; 41(8): 1194-1208, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33980085

RESUMO

Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.


Assuntos
Aciltransferases , Flavonoides , Aciltransferases/genética , Humanos , Plantas
7.
Chromosoma ; 128(2): 165-175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31111199

RESUMO

To better understand the structure and variability of the 45S rDNA cistron and its evolutionary dynamics in grasshoppers, we performed a detailed analysis combining classical and molecular cytogenetic data with whole-genome sequencing in Abracris flavolienata, which shows extraordinary variability in the chromosomal distribution for this element. We found astonishing variability in the number and size of rDNA clusters at intra- and inter-population levels. Interestingly, FISH using distinct parts of 45S rDNA cistron (18S rDNA, 28S rDNA, and ITS1) as probes revealed a distinct number of clusters, suggesting independent mobility and amplification of the 45S rDNA components. This hypothesis is consistent with the higher genomic coverage of almost the entire cistron of 45S rDNA observed in A. flavolineata compared to other grasshoppers, besides coverage variability along the 45S rDNA cistron in the species. In addition, these differences in coverage for distinct components of the 45S rDNA cistron indicate emergence of pseudogenes evidenced by existence of truncated sequences, demonstrating the rDNA dynamics in the species. Although the chromosomal distribution of 18S rDNA was highly variable, the chromosomes 1, 3, 6, and 9 harbored rDNA clusters in all individuals with the occurrence of NOR activity in pair 9, suggesting ancestry or selective pressures to prevent pseudogenization of rDNA sequences in this chromosome pair. Additionally, small NORs and cryptic rDNA loci were observed. Finally, there was no evidence of enrichment and association of transposable elements, at least, inside or nearby rDNA cistron. These findings broaden our knowledge of rDNA dynamics, revealing an independent movement and amplification of segments of 45S rDNA cistron, which in A. flavolineata could be attributed to ectopic recombination.


Assuntos
Cromossomos de Insetos/genética , DNA Ribossômico/genética , Gafanhotos/genética , RNA Ribossômico/genética , Animais , Genoma de Inseto , Masculino
8.
BMC Evol Biol ; 19(1): 72, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849938

RESUMO

BACKGROUND: Frizzled family members belong to G-protein coupled receptors and encode proteins accountable for cell signal transduction, cell proliferation and cell death. Members of Frizzled receptor family are considered to have critical roles in causing various forms of cancer, cardiac hypertrophy, familial exudative vitreoretinopathy (FEVR) and schizophrenia. RESULTS: This study investigates the evolutionary and structural aspects of Frizzled receptors, with particular focus on FEVR associated FZD4 gene. The phylogenetic tree topology suggests the diversification of Frizzled receptors at the root of metazoans history. Moreover, comparative structural data reveals that FEVR associated missense mutations in FZD4 effect the common protein region (amino acids 495-537) through a well-known phenomenon called epistasis. This critical protein region is present at the carboxyl-terminal domain and encompasses the K-T/S-XXX-W, a PDZ binding motif and S/T-X-V PDZ recognition motif. CONCLUSION: Taken together these results demonstrate that during the course of evolution, FZD4 has acquired new functions or epistasis via complex patter of gene duplications, sequence divergence and conformational remodeling. In particular, amino acids 495-537 at the C-terminus region of FZD4 protein might be crucial in its normal function and/or pathophysiology. This critical region of FZD4 protein may offer opportunities for the development of novel therapeutics approaches for human retinal vascular disease.


Assuntos
Evolução Molecular , Oftalmopatias Hereditárias/genética , Receptores Frizzled/química , Receptores Frizzled/genética , Doenças Retinianas/genética , Vitreorretinopatias Exsudativas Familiares , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto/genética , Filogenia , Domínios Proteicos
9.
J Exp Bot ; 70(21): 6127-6139, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31498865

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.


Assuntos
Evolução Molecular , Duplicação Gênica , Magnoliopsida/genética , Família Multigênica , Proteínas de Plantas/genética , Códon/genética , Conversão Gênica , Funções Verossimilhança , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Estabilidade Proteica , Seleção Genética , Spinacia oleracea/metabolismo , Termodinâmica
10.
Traffic ; 17(8): 872-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27060364

RESUMO

The ability of the actin-based cytoskeleton to rapidly reorganize is critical for maintaining cell organization and viability. The plethora of activities in which actin polymers participate require different biophysical properties, which can vary significantly between the different events that often occur simultaneously at separate cellular locations. In order to modify the biophysical properties of an actin polymer for a particular function, the cell contains diverse actin-binding proteins that modulate the growth, regulation and molecular interactions of actin-based structures according to functional requirements. In metazoan and yeast cells, tropomyosin is a key regulator of actin-based structures. Cells have the capacity to produce multiple tropomyosin isoforms, each capable of specifically associating as copolymers with actin at distinct cellular locations to fine-tune the functional properties of discrete actin structures. Here, we present a unifying theory in which tropomyosin isoforms critically define the surface landscape of copolymers with cytoplasmic ß- or γ-actin. Decoration of filamentous actin with different tropomyosin isoforms determines the identity and modulates the activity of the interacting myosin motor proteins. Conversely, changes in the nucleotide state of actin and posttranslational modifications affect the composition, morphology, subcellular localization and allosteric coupling of the associated actin-based superstructures.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Tropomiosina/metabolismo , Animais , Humanos
11.
Genome ; 61(1): 59-62, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29185797

RESUMO

Spittlebugs, which belong to the family Cercopidae (Auchenorrhyncha, Hemiptera), form a large group of xylem-feeding insects that are best known for causing damage to plantations and pasture grasses. The holocentric chromosomes of these insects remain poorly studied in regards to the organization of different classes of repetitive DNA. To improve chromosomal maps based on repetitive DNAs and to better understand the chromosomal organization and evolutionary dynamics of multigene families in spittlebugs, we physically mapped the U1 snRNA gene with fluorescence in situ hybridization (FISH) in 10 species of Cercopidae belonging to three different genera. All the U1 snDNA clusters were autosomal and located in interstitial position. In seven species, they were restricted to one autosome per haploid genome, while three species of the genus Mahanarva showed two clusters in two different autosomes. Although it was not possible to precisely define the ancestral location of this gene, it was possible to observe the presence of at least one cluster located in a small bivalent in all karyotypes. The karyotype stability observed in Cercopidae is also observed in respect to the distribution of U1 snDNA. Our data are discussed in light of possible mechanisms for U1 snDNA conservation and compared with the available data from other species.


Assuntos
Hemípteros/genética , RNA Nuclear Pequeno/genética , Animais , Mapeamento Cromossômico , Cromossomos de Insetos , DNA/química , Hibridização in Situ Fluorescente , Masculino , Sequências Repetitivas de Ácido Nucleico
12.
Mol Biol Evol ; 33(9): 2469-76, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297467

RESUMO

Interlocus gene conversion (IGC) homogenizes repeats. While genomes can be repeat-rich, the evolutionary importance of IGC is poorly understood. Additional statistical tools for characterizing it are needed. We propose a composite likelihood strategy for incorporating IGC into widely-used probabilistic models for sequence changes that originate with point mutation. We estimated the percentage of nucleotide substitutions that originate with an IGC event rather than a point mutation in 14 groups of yeast ribosomal protein-coding genes, and found values ranging from 20% to 38%. We designed and applied a procedure to determine whether these percentages are inflated due to artifacts arising from model misspecification. The results of this procedure are consistent with IGC having had an important role in the evolution of each of these 14 gene families. We further investigate the properties of our IGC approach via simulation. In contrast to usual practice, our findings suggest that the IGC should and can be considered when multigene family evolution is investigated.


Assuntos
Conversão Gênica , Família Multigênica , Leveduras/genética , Sequência de Bases/genética , Evolução Biológica , Evolução Molecular , Modelos Genéticos , Nucleotídeos/genética , Filogenia , Mutação Puntual , Saccharomyces cerevisiae , Análise de Sequência de DNA/métodos
13.
Int J Med Microbiol ; 307(2): 126-138, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28161108

RESUMO

Tuberculosis, one of the leading cause of death from infectious diseases, is caused by Mycobacterium tuberculosis. The genome of M. tuberculosis has been sequenced and nearly 40% of the whole genome sequence was categorized as hypothetical. Rv0774c was annotated as membrane exported hypothetical protein in TB database. In silico analysis revealed that Rv0774c is a paralog of PE-PGRS multi gene family with 100 aa N-terminal domain similar to PE domain of PE-PGRS proteins. Its C-terminal domain is quite different from PGRS domain, having characteristic lipase signature GXSXG & HG and catalytic residues predicted for lipolytic activity. Therefore, DNA coding for Rv0774c (303 aa), its N-terminal (1-100 aa) and C- terminal domain (100-303 aa) were separately cloned from M. tuberculosis and were over expressed in E. coli. Rv0774c gene and its C-terminal lipolytic domain preferably hydrolyzed short chain esters. Though no enzyme activity was observed in N-terminus PE like domain, it was demonstrated to enhance the thermostability of full length Rv0774c. Tetrahydrolipstatin inhibited the enzyme activity and predicted catalytic residues (Ser-185, Asp-255 and His-281) were confirmed by site directed mutagenesis. Rv0774c was secreted out in culture media by M. tuberculosis and was up-regulated in iron limiting conditions. Treatment of THP-1 cells with rRv0774c resulted in a decline in the LPS induced production of NO and expression of iNOS. rRv0774c treated THP-1 cells also showed an enhanced expression of IL-10 and TLR2. On contrary, it suppressed the LPS induced production of IL-12, chemokines MCP-1 and IL-8. Rv0774c inhibited the LPS induced phosphorylation of p38. These observations suggested that Rv0774c could modulate the pro-inflammatory immune response to support intracellular survival of the mycobacterium.


Assuntos
Proteínas de Bactérias/metabolismo , Citocinas/antagonistas & inibidores , Esterases/metabolismo , Terapia de Imunossupressão , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/fisiologia , Receptor 2 Toll-Like/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Linhagem Celular , Clonagem Molecular , Análise Mutacional de DNA , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/química , Esterases/genética , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Lipopolissacarídeos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Temperatura
14.
Int J Mol Sci ; 18(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358304

RESUMO

The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.


Assuntos
Aldeído Oxirredutases/metabolismo , Lactoilglutationa Liase/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Tioléster Hidrolases/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Lactoilglutationa Liase/química , Lactoilglutationa Liase/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Tioléster Hidrolases/química , Tioléster Hidrolases/genética
15.
BMC Evol Biol ; 16(1): 256, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894257

RESUMO

BACKGROUND: The merozoite surface protein 7 (MSP7) is a Plasmodium protein which is involved in parasite invasion; the gene encoding it belongs to a multigene family. It has been proposed that MSP7 paralogues seem to be functionally redundant; however, recent experiments have suggested that they could have different roles. RESULTS: The msp7 multigene family has been described in newly available Plasmodium genomes; phylogenetic relationships were established in 12 species by using different molecular evolutionary approaches for assessing functional divergence amongst MSP7 members. Gene expansion and contraction rule msp7 family evolution; however, some members could have had concerted evolution. Molecular evolutionary analysis showed that relaxed and/or intensified selection modulated Plasmodium msp7 paralogous evolution. Furthermore, episodic diversifying selection and changes in evolutionary rates suggested that some paralogous proteins have diverged functionally. CONCLUSIONS: Even though msp7 has mainly evolved in line with a birth-and-death evolutionary model, gene conversion has taken place between some paralogous genes allowing them to maintain their functional redundancy. On the other hand, the evolutionary rate of some MSP7 paralogs has become altered, as well as undergoing relaxed or intensified (positive) selection, suggesting functional divergence. This could mean that some MSP7s can form different parasite protein complexes and/or recognise different host receptors during parasite invasion. These results highlight the importance of this gene family in the Plasmodium genus.


Assuntos
Evolução Molecular , Proteínas de Membrana/genética , Plasmodium/genética , Proteínas de Protozoários/genética , Animais , Conversão Gênica , Merozoítos/metabolismo , Família Multigênica , Filogenia , Plasmodium/classificação , Plasmodium/crescimento & desenvolvimento , Seleção Genética
16.
Mol Genet Genomics ; 291(4): 1607-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27106499

RESUMO

The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.


Assuntos
Mapeamento Cromossômico/métodos , DNA Ribossômico/genética , Gafanhotos/genética , RNA Ribossômico 5S/genética , Animais , Cromossomos/genética , Evolução Molecular , Feminino , Masculino , Pseudogenes , Análise de Sequência de DNA , Análise de Sequência de Proteína
17.
Mol Genet Genomics ; 291(1): 65-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26159870

RESUMO

To characterize the structure and expression of a large multigene family of α/ß-gliadin genes, 90 individual α/ß-gliadin genes harboring a promoter region were identified in the wheat cultivar Chinese Spring. These genes were classified into eleven groups by phylogenetic analysis, and the chromosomes they were derived from were determined. Of these genes, 50 had the basic α/ß-gliadin domains and six conserved cysteine residues and 16, 16 and 18 of them were, respectively, located on chromosome 6A, 6B and 6D. Six genes had an additional cysteine residue, suggesting that these α/ß-gliadins acquired the property of binding other proteins through intermolecular disulphide bands. Expression of α/ß-gliadin genes in developing seeds was measured by quantitative RT-PCR using group-specific primers over 3 years. Expression patterns of these genes on the basis of accumulated temperature were similar among gene groups, whereas expression levels differed for the 3 years. The expression of most α/ß-gliadin and other prolamin genes was correlated with the sunshine duration. On the other hand, although all α/ß-gliadin genes had a common E-box within the -300 promoter region, some genes showed a particular expression pattern with respect to the sunshine duration, similarly to gene encoding high-molecular weight glutenin subunits and endosperm enzymes. These observations suggested that expression of each α/ß-gliadin gene is differentially regulated by multiple regulatory factors.


Assuntos
Gliadina/genética , Família Multigênica/genética , Triticum/genética , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glutens/genética , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
18.
Drug Resist Updat ; 18: 47-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25467627

RESUMO

The clag multigene family is strictly conserved in malaria parasites, but absent from neighboring genera of protozoan parasites. Early research pointed to roles in merozoite invasion and infected cell cytoadherence, but more recent studies have implicated channel-mediated uptake of ions and nutrients from host plasma. Here, we review the current understanding of this gene family, which appears to be central to host-parasite interactions and an important therapeutic target.


Assuntos
Malária/parasitologia , Plasmodium/genética , Proteínas de Protozoários/genética , Animais , Interações Hospedeiro-Patógeno/genética , Humanos , Família Multigênica/genética
19.
J Basic Microbiol ; 56(12): 1392-1397, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27400399

RESUMO

Here we present the results of the exploration of laccase multigene families (MGFs) in basidiomycetous fungi from different taxonomic groups using a next generation sequencing (NGS) technology. In our study, multiple laccase genes were identified in all of the investigated fungi (13 species) from Polyporaceae, Phanerochaetaceae, Meruliaceae, Pleurotaceae, Physalacriaceae, and Peniophoraceae families. It was shown that phylogenetic positioning of the newly identified sequences exhibit patterns of clusterization with respect to enzyme properties. This can be a potentially useful tool for selecting naturally existing laccases with different physicochemical characteristics relevant to different biotechnological applications. Moreover, the method developed in this study can be used in the screening of environmental samples and fast characterization of laccase MGFs in newly identified fungal species.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Genes Fúngicos , Lacase/genética , Família Multigênica , Basidiomycota/classificação , Basidiomycota/crescimento & desenvolvimento , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia
20.
Microbiol Immunol ; 59(8): 495-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094962

RESUMO

A virulence plasmid of Rhodococcus equi harbors the vap mutigene family. Here it is shown that transcription of vap gene family members other than vapA (vapD, vapE and vapG) is regulated by temperature and pH and abolished when either virS or virR is deleted. Expression of VirS in the absence of functional VirR was found to increase the transcription of vap genes to the amount expressed in the presence of VirR. These findings suggest that transcription of vap genes is regulated by VirS and that VirR is involved in the mechanism of transcriptional responses to temperature and pH.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Família Multigênica , Rhodococcus equi/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/efeitos da radiação , Fatores de Virulência/biossíntese , Concentração de Íons de Hidrogênio , Plasmídeos , Rhodococcus equi/efeitos dos fármacos , Rhodococcus equi/efeitos da radiação , Temperatura , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA