Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
2.
Bioessays ; 45(9): e2300031, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424007

RESUMO

MutL family proteins contain an N-terminal ATPase domain (NTD), an unstructured interdomain linker, and a C-terminal domain (CTD), which mediates constitutive dimerization between subunits and often contains an endonuclease active site. Most MutL homologs direct strand-specific DNA mismatch repair by cleaving the error-containing daughter DNA strand. The strand cleavage reaction is poorly understood; however, the structure of the endonuclease active site is consistent with a two- or three-metal ion cleavage mechanism. A motif required for this endonuclease activity is present in the unstructured linker of Mlh1 and is conserved in all eukaryotic Mlh1 proteins, except those from metamonads, which also lack the almost absolutely conserved Mlh1 C-terminal phenylalanine-glutamate-arginine-cysteine (FERC) sequence. We hypothesize that the cysteine in the FERC sequence is autoinhibitory, as it sequesters the active site. We further hypothesize that the evolutionary co-occurrence of the conserved linker motif with the FERC sequence indicates a functional interaction, possibly by linker motif-mediated displacement of the inhibitory cysteine. This role is consistent with available data for interactions between the linker motif with DNA and the CTDs in the vicinity of the active site.


Assuntos
Clivagem do DNA , Eucariotos , Proteínas MutL/química , Proteínas MutL/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Cisteína , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , DNA/genética , Endonucleases/metabolismo
3.
Lab Invest ; 104(9): 102107, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964504

RESUMO

DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers; however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sublines were established. Wound healing and transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (severe combined immunodeficiency mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 downstream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sublines, OE cells presented weaker migration/invasion abilities, compared with controls, whereas in KD cells, these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G protein-coupled receptor, family C, group 5, member C (GPRC5C) was a key downstream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion and remarkably reversed the proinvasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histologic grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via downregulation of GPRC5C.

4.
Proc Natl Acad Sci U S A ; 117(48): 30577-30588, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199619

RESUMO

Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Troca Genética , Exodesoxirribonucleases/metabolismo , Meiose/genética , Proteínas MutL/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Recombinação Genética
5.
Proc Natl Acad Sci U S A ; 117(28): 16302-16312, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32586954

RESUMO

DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Humanos , Complexos Multiproteicos/metabolismo , Proteínas MutL/química , Proteína 2 Homóloga a MutS/química , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Dobramento de Proteína , Multimerização Proteica
6.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047138

RESUMO

The human pathogen Neisseria gonorrhoeae uses a homologous recombination to undergo antigenic variation and avoid an immune response. The surface protein pilin (PilE) is one of the targets for antigenic variation that can be regulated by N. gonorrhoeae mismatch repair (MMR) and a G-quadruplex (G4) located upstream of the pilE promoter. Using bioinformatics tools, we found a correlation between pilE variability and deletion of DNA regions encoding ngMutS or ngMutL proteins, the main participants in N. gonorrhoeae methyl-independent MMR. To understand whether the G4 structure could affect the ngMutL-mediated regulation of pilin antigenic variation, we designed several synthetic pilE G4-containing oligonucleotides, differing in length, and related DNA duplexes. Using CD measurements and biochemical approaches, we have showed that (i) ngMutL preferentially binds to pilE G4 compared to DNA duplex, although the latter is a cognate substrate for ngMutL endonuclease, (ii) protein binding affinity decreases with shortening of quadruplex-containing and duplex ligands, (iii) the G4 structure inhibits ngMutL-induced DNA nicking and modulates cleavage positions; the enzyme does not cleave DNA within G4, but is able to bypass this noncanonical structure. Thus, pilE G4 may regulate the efficiency of pilin antigenic variation by quadruplex binding to ngMutL and suppression of homologous recombination.


Assuntos
Proteínas de Fímbrias , Neisseria gonorrhoeae , Humanos , Proteínas de Fímbrias/metabolismo , Neisseria gonorrhoeae/genética , Reparo de Erro de Pareamento de DNA , Variação Antigênica , Ligação Proteica
7.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674575

RESUMO

G-quadruplexes (G4s), the most widely studied alternative DNA structures, are implicated in the regulation of the key cellular processes. In recent years, their involvement in DNA repair machinery has become the subject of intense research. Here, we evaluated the effect of G4 on the prokaryotic DNA mismatch repair (MMR) pathway from two bacterial sources with different mismatch repair mechanisms. The G4 folding, which competes with the maintenance of double-stranded DNA, is known to be controlled by numerous opposing factors. To overcome the kinetic barrier of G4 formation, we stabilized a parallel G4 formed by the d(GGGT)4 sequence in a DNA plasmid lacking a fragment complementary to the G4 motif. Unlike commonly used isolated G4 structures, our plasmid with an embedded stable G4 structure contained elements, such as a MutH cleavage site, required to initiate the repair process. G4 formation in the designed construct was confirmed by Taq polymerase stop assay and dimethyl sulfate probing. The G4-carrying plasmid, together with control ones (lacking a looped area or containing unstructured d(GT)8 insert instead of the G4 motif), were used as new type models to answer the question of whether G4 formation interferes with DNA cleavage as a basic function of MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Quadruplex G , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , DNA/química , Plasmídeos/genética , Reparo do DNA
8.
Biochemistry (Mosc) ; 87(9): 965-982, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180987

RESUMO

Neisseria gonorrhoeae (a Gram-negative diplococcus) is a human pathogen and causative agent of gonorrhea, a sexually transmitted infection. The bacterium uses various approaches for adapting to environmental conditions and multiplying efficiently in the human body, such as regulation of expression of gene expression of surface proteins and lipooligosaccharides (e.g., expression of various forms of pilin). The systems of DNA repair play an important role in the bacterium ability to survive in the host body. This review describes DNA repair systems of N. gonorrhoeae and their role in the pathogenicity of this bacterium. A special attention is paid to the mismatch repair system (MMR) and functioning of the MutS and MutL proteins, as well as to the role of these proteins in regulation of the pilin antigenic variation of the N. gonorrhoeae pathogen.


Assuntos
Proteínas de Fímbrias , Neisseria gonorrhoeae , Variação Antigênica , Reparo do DNA , Proteínas de Fímbrias/metabolismo , Humanos , Proteínas MutL/metabolismo , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo
9.
J Biol Chem ; 295(51): 17460-17475, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453991

RESUMO

Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.


Assuntos
Recombinação Homóloga , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteínas MutL/metabolismo , Camptotecina/farmacologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Cruciforme , Fase G2 , Raios gama , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteínas MutL/genética , Mutação , Ftalazinas/farmacologia , Piperazinas/farmacologia
10.
J Biol Chem ; 295(4): 1056-1065, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31843968

RESUMO

The mismatch repair (MMR) complex is composed of MutSα (MSH2-MSH6) and MutLα (MLH1-PMS2) and specifically recognizes mismatched bases during DNA replication. O6-Methylguanine is produced by treatment with alkylating agents, such as N-methyl-N-nitrosourea (MNU), and during DNA replication forms a DNA mismatch (i.e. an O6-methylguanine/thymine pair) and induces a G/C to A/T transition mutation. To prevent this outcome, cells carrying this DNA mismatch are eliminated by MMR-dependent apoptosis, but the underlying molecular mechanism is unclear. In this study, we provide evidence that the chromatin-regulatory and ATP-dependent nucleosome-remodeling protein SMARCAD1 is involved in the induction of MMR-dependent apoptosis in human cells. Unlike control cells, SMARCAD1-knockout cells (ΔSMARCAD1) were MNU-resistant, and the appearance of a sub-G1 population and caspase-9 activation were significantly suppressed in the ΔSMARCAD1 cells. Furthermore, the MNU-induced mutation frequencies were increased in these cells. Immunoprecipitation analyses revealed that the recruitment of MutLα to chromatin-bound MutSα, observed in SMARCAD1-proficient cells, is suppressed in ΔSMARCAD1 cells. Of note, the effect of SMARCAD1 on the recruitment of MutLα exclusively depended on the ATPase activity of the protein. On the basis of these findings, we propose that SMARCAD1 induces apoptosis via its chromatin-remodeling activity, which helps recruit MutLα to MutSα on damaged chromatin.


Assuntos
Apoptose , Cromatina/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Metilnitrosoureia , Modelos Biológicos , Taxa de Mutação , Transdução de Sinais
11.
J Biol Chem ; 295(33): 11643-11655, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571878

RESUMO

In humans, mutations in genes encoding homologs of the DNA mismatch repair endonuclease MutL cause a hereditary cancer that is known as Lynch syndrome. Here, we determined the crystal structures of the N-terminal domain (NTD) of MutL from the thermophilic eubacterium Aquifex aeolicus (aqMutL) complexed with ATP analogs at 1.69-1.73 Å. The structures revealed significant structural similarities to those of a human MutL homolog, postmeiotic segregation increased 2 (PMS2). We introduced five Lynch syndrome-associated mutations clinically found in human PMS2 into the aqMutL NTD and investigated the protein stability, ATPase activity, and DNA-binding ability of these protein variants. Among the mutations studied, the most unexpected results were obtained for the residue Ser34. Ser34 (Ser46 in PMS2) is located at a previously identified Bergerat ATP-binding fold. We found that the S34I aqMutL NTD retains ATPase and DNA-binding activities. Interestingly, CD spectrometry and trypsin-limited proteolysis indicated the disruption of a secondary structure element of the S34I NTD, destabilizing the overall structure of the aqMutL NTD. In agreement with this, the recombinant human PMS2 S46I NTD was easily digested in the host Escherichia coli cells. Moreover, other mutations resulted in reduced DNA-binding or ATPase activity. In summary, using the thermostable aqMutL protein as a model molecule, we have experimentally determined the effects of the mutations on MutL endonuclease; we discuss the pathological effects of the corresponding mutations in human PMS2.


Assuntos
Proteínas de Bactérias/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas MutL/genética , Mutação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aquifex/química , Aquifex/genética , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Reparo de Erro de Pareamento de DNA , Humanos , Modelos Moleculares , Proteínas MutL/química , Conformação Proteica , Domínios Proteicos
12.
J Mol Evol ; 89(1-2): 12-18, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33409543

RESUMO

Repairing DNA damage is one of the most important functions of the 'housekeeping' proteins, as DNA molecules are constantly subject to different kinds of damage. An important mechanism of DNA repair is the mismatch repair system (MMR). In eukaryotes, it is more complex than it is in bacteria or Archaea due to an inflated number of paralogues produced as a result of an extensive process of gene duplication and further specialization upon the evolution of the first eukaryotes, including an important part of the meiotic machinery. Recently, the discovery and sequencing of Asgard Archaea allowed us to revisit the MMR system evolution with the addition of new data from a group that is closely related to the eukaryotic ancestor. This new analysis provided evidence for a complex evolutionary history of eukaryotic MMR: an archaeal origin for the nuclear MMR system in eukaryotes, with subsequent acquisitions of other MMR systems from organelles.


Assuntos
Reparo de Erro de Pareamento de DNA , Eucariotos , Archaea/genética , Reparo de Erro de Pareamento de DNA/genética , Eucariotos/genética , Células Eucarióticas , Genoma Arqueal/genética
13.
Microbiology (Reading) ; 167(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882086

RESUMO

Over the last 70 years, we've all gotten used to an Escherichia coli-centric view of the microbial world. However, genomics, as well as the development of improved tools for genetic manipulation in other species, is showing us that other bugs do things differently, and that we cannot simply extrapolate from E. coli to everything else. A particularly good example of this is encountered when considering the mechanism(s) involved in DNA mismatch repair by the opportunistic human pathogen, Pseudomonas aeruginosa (PA). This is a particularly relevant phenotype to examine in PA, since defects in the mismatch repair (MMR) machinery often give rise to the property of hypermutability. This, in turn, is linked with the vertical acquisition of important pathoadaptive traits in the organism, such as antimicrobial resistance. But it turns out that PA lacks some key genes associated with MMR in E. coli, and a closer inspection of what is known (or can be inferred) about the MMR enzymology reveals profound differences compared with other, well-characterized organisms. Here, we review these differences and comment on their biological implications.


Assuntos
Reparo de Erro de Pareamento de DNA , Pseudomonas aeruginosa , Escherichia coli , Metilação , Proteínas MutL/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
14.
BMC Cancer ; 21(1): 797, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34243735

RESUMO

BACKGROUND: MutL Homolog 1 (MLH1) promotor methylation is associated with microsatellite instability high colorectal cancer (CRC). The strong correlation between methylation status and cancer development and progression has led to a growing interest in the use of methylation markers in circulating tumor DNA (ctDNA) for early cancer detection and longitudinal monitoring. As cancer-specific DNA methylation changes in body fluids are limited, it is particularly challenging to develop clinically applicable liquid biopsy methodologies with high sensitivity and specificity. The purpose of this study was to develop a fit-for-purpose methylation sensitive restriction enzyme (MSRE) based digital droplet PCR (ddPCR) assay to examine MLH1 promoter methylation in ctDNA in advanced CRC. METHODS: Primers and probes were designed to amplify CpG sites of the MLH1 promoter. Methylated and unmethylated control genomic DNA were sheared to mimic ctDNA and subjected to MSRE HpaII digestion. Plasma samples from 20 healthy donors and 28 CRC patients were analyzed with the optimized MSRE procedure using ddPCR. RESULTS: Using methylated and unmethylated controls, we optimized the conditions for HpaII enzyme digestion to ensure complete digestion and avoid false positives. Based on the results from the ddPCR assay using 1 ng circulating cell-free DNA (cfDNA) input from healthy donors or CRC samples, ROC curves were generated with an area under the curve (AUC) value of 0.965 (95% CI: 0.94, 0.99). The statistically optimal assay sensitivity and specificity was achieved when 8 positive droplets were used as acceptance criteria (78% sensitivity and 100% specificity, 95% CI: 0.45, 0.95). A tiered-based cutoff (20, 50, 80% percentile based) was applied to distinguish CRC samples with different methylation level. CONCLUSIONS: Our study demonstrated that the liquid biopsy assay for MLH1 promoter methylation detection using purely quantitative ddPCR is a simple and highly sensitive procedure that provides reliable methylation detection in ctDNA. The MSRE ddPCR approach can also be applied to other genes of interest where methylation patterns could reveal clinically relevant information for future clinical biomarker and/or companion diagnostic development.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA/genética , Biópsia Líquida/métodos , Proteína 1 Homóloga a MutL/metabolismo , Reação em Cadeia da Polimerase/métodos , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino
15.
Mol Biol (Mosk) ; 55(2): 289-304, 2021.
Artigo em Russo | MEDLINE | ID: mdl-33871442

RESUMO

The mismatch repair system (MMR) ensures the stability of genetic information during DNA replication in almost all organisms. Mismatch repair is initiated after recognition of a non-canonical nucleotide pair by the MutS protein and the formation of a complex between MutS and MutL. Eukaryotic and most bacterial MutL homologs function as endonucleases that introduce a single-strand break in the daughter strand of the DNA, thus activating the repair process. However, many aspects of the functioning of this protein remain unknown. We studied the ATPase and DNA binding functions of the MutL protein from the pathogenic bacterium Neisseria gonorrhoeae (NgoMutL), which exhibits endonuclease activity. For the first time, the kinetic parameters of ATP hydrolysis by the full-length NgoMutL protein were determined. Its interactions with single- and double-stranded DNA fragments of various lengths were studied. NgoMutL was shown to be able to efficiently form complexes with DNA fragments that are longer than 40 nucleotides. Using modified DNA duplexes harboring a 2-pyridyldisulfide group on linkers of various lengths, we obtained NgoMutL conjugates with DNA for the first time. According to these results, the Cys residues of the wild-type protein are located at a distance of approximately 18-50 Šfrom the duplex. The efficiency of the affinity modification of Cys residues in NgoMutL with reactive DNAs was shown to decrease in the presence of ATP or its non-hydrolyzable analog, as well as ZnCl2, in the reaction mixture. We hypothesize that the conserved Cys residues of the C-terminal domain of NgoMutL, which are responsible for the coordination of metal ions in the active center of the protein, are involved in its interaction with DNA. This information may be useful in reconstruction of the main stages of MMR in prokaryotes that are different from γ-proteobacteria, as well as in the search for new targets for drugs against N. gonorrhoeae.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli , Trifosfato de Adenosina , DNA/genética , Reparo de Erro de Pareamento de DNA/genética , Reparo do DNA , Proteínas MutL/genética , Proteínas MutL/metabolismo , Neisseria gonorrhoeae/genética
16.
Int J Cancer ; 146(4): 1052-1063, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31259424

RESUMO

Sorafenib provides survival benefits in patients with advanced renal cell carcinoma (RCC), but its use is hampered by acquired drug resistance. It is important to fully clarify the molecular mechanisms of sorafenib resistance, which can help to avoid, delay or reverse drug resistance. Extracellular vesicles (EVs) can mediate intercellular communication by delivering effector molecules between cells. Here, we studied whether EVs are involved in sorafenib resistance of RCC and its possible molecular mechanisms. Using differential centrifugation, EVs were isolated from established sorafenib-resistant RCC cells (786-0 and ACHN), and EVs derived from sorafenib-resistant cells were uptaken by sensitive parental RCC cells and thus promoted drug resistance. Elevated exogenous miR-31-5p within EVs effectively downregulated MutL homolog 1 (MLH1) expression and thus promoted sorafenib resistance in vitro. Mice experiments also confirmed that miR-31-5p could mediate drug sensitivity in vivo. In addition, low expression of MLH1 was observed in sorafenib-resistant RCC cells and upregulation of MLH1 expression restored the sensitivity of resistant cell lines to sorafenib. Finally, miR-31-5p level in circulating EVs of RCC patients with progressive disease (PD) during sorafenib therapy was higher when compared to that in the pretherapy status. In conclusion, EVs shuttled miR-31-5p can transfer resistance information from sorafenib-resistant cells to sensitive cells by directly targeting MLH1, and thus magnify the drug resistance information to the whole tumor. Furthermore, miR-31-5p and MLH1 could be promising predictive biomarkers and therapeutic targets to prevent sorafenib resistance.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Sorafenibe/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Vesículas Extracelulares/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína 1 Homóloga a MutL/biossíntese , Proteína 1 Homóloga a MutL/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
BMC Microbiol ; 20(1): 40, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111158

RESUMO

BACKGROUND: Acinetobacter baylyi ADP1 is an ideal bacterial strain for high-throughput genetic analysis as the bacterium is naturally transformable. Thus, ADP1 can be used to investigate DNA mismatch repair, a mechanism for repairing mismatched bases. We used the mutS deletion mutant (XH439) and mutL deletion mutant (XH440), and constructed a mutS mutL double deletion mutant (XH441) to investigate the role of the mismatch repair system in A. baylyi. RESULTS: We determined the survival rates after UV irradiation and measured the mutation frequencies, rates and spectra of wild-type ADP1 and mutSL mutant via rifampin resistance assay (RifR assay) and experimental evolution. In addition, transformation efficiencies of genomic DNA in ADP1 and its three mutants were determined. Lastly, the relative growth rates of the wild type strain, three constructed deletion mutants, as well as the rifampin resistant mutants obtained from RifR assays, were measured. All three mutants had higher survival rates after UV irradiation than wild type, especially the double deletion mutant. Three mutants showed higher mutation frequencies than ADP1 and favored transition mutations in RifR assay. All three mutants showed increased mutation rates in the experimental evolution. However, only XH439 and XH441 had higher mutation rates than the wild type strain in RifR assay. XH441 showed higher transformation efficiency than XH438 when donor DNA harbored transition mutations. All three mutants showed higher growth rates than wild-type, and these four strains displayed higher growth rates than almost all their rpoB mutants. The growth rate results showed different amino acid mutations in rpoB resulted in different extents of reduction in the fitness of rifampin resistant mutants. However, the fitness cost brought by the same mutation did not vary with strain background. CONCLUSIONS: We demonstrated that inactivation of both mutS and mutL increased the mutation rates and frequencies in A. baylyi, which would contribute to the evolution and acquirement of rifampicin resistance. The mutS deletion is also implicated in increased mutation rates and frequencies, suggesting that MutL may be activated even in the absence of mutS. The correlation between fitness cost and rifampin resistance mutations in A. baylyi is firstly established.


Assuntos
Acinetobacter/crescimento & desenvolvimento , Proteínas MutL/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Taxa de Mutação , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/efeitos da radiação , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Evolução Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Aptidão Genética , Viabilidade Microbiana/efeitos da radiação , Rifampina/farmacologia
19.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233554

RESUMO

DNA mismatch repair (MMR) plays a crucial role in the maintenance of genomic stability. The main MMR protein, MutS, was recently shown to recognize the G-quadruplex (G4) DNA structures, which, along with regulatory functions, have a negative impact on genome integrity. Here, we studied the effect of G4 on the DNA-binding activity of MutS from Rhodobacter sphaeroides (methyl-independent MMR) in comparison with MutS from Escherichia coli (methyl-directed MMR) and evaluated the influence of a G4 on the functioning of other proteins involved in the initial steps of MMR. For this purpose, a new DNA construct was designed containing a biologically relevant intramolecular stable G4 structure flanked by double-stranded regions with the set of DNA sites required for MMR initiation. The secondary structure of this model was examined using NMR spectroscopy, chemical probing, fluorescent indicators, circular dichroism, and UV spectroscopy. The results unambiguously showed that the d(GGGT)4 motif, when embedded in a double-stranded context, adopts a G4 structure of a parallel topology. Despite strong binding affinities of MutS and MutL for a G4, the latter is not recognized by E. coli MMR as a signal for repair, but does not prevent MMR processing when a G4 and G/T mismatch are in close proximity.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Bacteriano/genética , Escherichia coli/genética , Quadruplex G , Genoma Bacteriano , Rhodobacter sphaeroides/genética , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , Rhodobacter sphaeroides/metabolismo
20.
J Biol Chem ; 293(37): 14285-14294, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30072380

RESUMO

Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.


Assuntos
DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Thermus/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , Modelos Teóricos , Ligação Proteica , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA