Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(11): 2118-2134.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36137543

RESUMO

While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.


Assuntos
Linfócitos B , Plasmócitos , Animais , Camundongos , Linfócitos T , Imunoglobulinas , Encéfalo , Imunidade nas Mucosas , Anticorpos Antivirais
2.
Rev Med Virol ; 34(6): e2585, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39349731

RESUMO

Matrix metalloproteinases (MMPs) are a diverse group of proteases involved in various physiological and pathological processes through modulation of extracellular matrix (ECM) components, cytokines, and growth factors. In the central nervous system (CNS), MMPs play a major role in CNS development, plasticity, repair, and reorganisation contributing to learning, memory, and neuroimmune response to injury. MMPs are also linked to various neurological disorders such as Alzheimer's disease, Parkinson's disease, cerebral aneurysm, stroke, epilepsy, multiple sclerosis, and brain cancer suggesting these proteases as key regulatory factors in the nervous system. Moreover, MMPs have been involved in the pathogenesis of neurotropic viral infections via dysregulation of various cellular processes, which may highlight these factors as potential targets for the treatment and control of neurological complications associated with viral pathogens. This review provides an overview of the roles of MMPs in various physiological processes of the CNS and their interactions with neurotropic viral pathogens.


Assuntos
Sistema Nervoso Central , Metaloproteinases da Matriz , Humanos , Metaloproteinases da Matriz/metabolismo , Animais , Sistema Nervoso Central/virologia , Interações Hospedeiro-Patógeno , Vírus/patogenicidade , Matriz Extracelular/metabolismo
3.
Rev Med Virol ; 34(6): e2589, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39384363

RESUMO

The persistent challenge posed by viruses that infect the central nervous system lies in their sophisticated ability to evade the host immune system. This review explores into the complex mechanisms of immune evasion employed by these neurotropic viruses, focussing on their modulation of host immune responses, evasion of adaptive immunity, and the cellular and molecular strategies that enable their persistence. Key areas explored include viral latency and reactivation, the inhibition of apoptosis, and antigenic variation, with a detailed examination of viral proteins and their interactions with host cellular processes.


Assuntos
Evasão da Resposta Imune , Humanos , Animais , Interações Hospedeiro-Patógeno/imunologia , Latência Viral/imunologia , Imunidade Adaptativa , Apoptose , Viroses do Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/imunologia , Ativação Viral/imunologia , Vírus/imunologia , Vírus/patogenicidade , Variação Antigênica
4.
Rev Med Virol ; 34(5): e2584, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39304923

RESUMO

Neurotropic viruses have been implicated in altering the central nervous system microenvironment and promoting brain metastasis of breast cancer through complex interactions involving viral entry mechanisms, modulation of the blood-brain barrier, immune evasion, and alteration of the tumour microenvironment. This narrative review explores the molecular mechanisms by which neurotropic viruses such as Herpes Simplex Virus, Human Immunodeficiency Virus, Japanese Encephalitis Virus, and Rabies Virus facilitate brain metastasis, focusing on their ability to disrupt blood-brain barrier integrity, modulate immune responses, and create a permissive environment for metastatic cell survival and growth within the central nervous system. Current therapeutic implications and challenges in targeting neurotropic viruses to prevent or treat brain metastasis are discussed, highlighting the need for innovative strategies and multidisciplinary approaches in virology, oncology, and immunology.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/virologia , Neoplasias da Mama/terapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/virologia , Neoplasias Encefálicas/terapia , Feminino , Barreira Hematoencefálica/virologia , Animais , Microambiente Tumoral , Vírus da Raiva/fisiologia , Vírus da Raiva/patogenicidade , Vírus da Raiva/imunologia , Simplexvirus/fisiologia
5.
Rev Med Virol ; 34(5): e2575, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39160646

RESUMO

Neurotropic viral infections pose a significant challenge due to their ability to target the central nervous system and cause severe neurological complications. Traditional antiviral therapies face limitations in effectively treating these infections, primarily due to the blood-brain barrier, which restricts the delivery of therapeutic agents to the central nervous system. Nanoparticle-based therapies have emerged as a promising approach to overcome these challenges. Nanoparticles offer unique properties that facilitate drug delivery across biological barriers, such as the blood-brain barrier, and can be engineered to possess antiviral activities.


Assuntos
Antivirais , Barreira Hematoencefálica , Viroses do Sistema Nervoso Central , Nanopartículas , Humanos , Nanopartículas/química , Antivirais/uso terapêutico , Antivirais/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Viroses do Sistema Nervoso Central/tratamento farmacológico , Viroses do Sistema Nervoso Central/virologia , Sistemas de Liberação de Medicamentos , Viroses/tratamento farmacológico , Viroses/virologia
6.
Rev Med Virol ; 34(1): e2513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282404

RESUMO

Neurotropic viruses, with their ability to invade the central nervous system, present a significant public health challenge, causing a spectrum of neurological diseases. Clinical manifestations of neurotropic viral infections vary widely, from mild to life-threatening conditions, such as HSV-induced encephalitis or poliovirus-induced poliomyelitis. Traditional diagnostic methods, including polymerase chain reaction, serological assays, and imaging techniques, though valuable, have limitations. To address these challenges, biosensor-based methods have emerged as a promising approach. These methods offer advantages such as rapid results, high sensitivity, specificity, and potential for point-of-care applications. By targeting specific biomarkers or genetic material, biosensors utilise technologies like surface plasmon resonance and microarrays, providing a direct and efficient means of diagnosing neurotropic infections. This review explores the evolving landscape of biosensor-based methods, highlighting their potential to enhance the diagnostic toolkit for neurotropic viruses.


Assuntos
Técnicas Biossensoriais , Doenças do Sistema Nervoso , Poliomielite , Vírus , Humanos , Vírus/genética
7.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38546100

RESUMO

Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Ratos , Animais , Vírus da Febre do Vale do Rift/fisiologia , Citocinas , Encéfalo , Morte Celular
8.
Ann Surg Oncol ; 31(9): 6088-6096, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851639

RESUMO

BACKGROUND: Cutaneous neurotropic melanoma (NM) of the head and neck (H&N) is prone to local relapse, possibly due to difficulties widely excising the tumor. This trial assessed radiation therapy (RT) to the primary site after local excision. METHODS: Participants from 15 international centers were randomized to observation or RT. The participants were required to have microscopically negative excision margins 5 mm wide or wider and no evidence of disease elsewhere. The primary outcome was time to local relapse. The secondary outcomes included time to any recurrence, overall survival (OS), and toxicity. RESULTS: The trial ceased prematurely due to slow recruitment and the COVID-19 pandemic. During 2009-2020, 50 participants were randomized: 23 to observation and 27 to RT. The most common NM subsites were scalp (32%), midface (22%), and lip (20%). The median depth of invasion was 5 mm, and desmoplasia observed in 69%. The median duration from randomization to last contact was 4.8 years. Four participants (8%) experienced local relapse as a first recurrence during the study period: 3 in the observation arm and 1 in the RT arm (hazard ratio [HR] 0.29; 95% confidence interval [CI] 0.03-2.76; p = 0.279). No statistically significant difference in time to any relapse or OS was observed. More than 6 months after randomization, grade 3 or greater toxicity was experienced by 10% of the participants in the observation arm and 12.5% of the participants in the RT arm of the study. CONCLUSION: Due to low accrual, the role of adjuvant RT for cutaneous NM of the H&N excised with microscopically negative margins 5 mm wide or wider remains undefined. Its routine use cannot be recommended. Local relapse might be less common than previously anticipated based on retrospective reports.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Recidiva Local de Neoplasia , Neoplasias Cutâneas , Humanos , Melanoma/cirurgia , Melanoma/patologia , Melanoma/radioterapia , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/cirurgia , Neoplasias de Cabeça e Pescoço/patologia , Idoso , Recidiva Local de Neoplasia/patologia , Taxa de Sobrevida , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Neoplasias Cutâneas/radioterapia , Radioterapia Adjuvante , Seguimentos , Adulto , Prognóstico , COVID-19/epidemiologia , Margens de Excisão , Idoso de 80 Anos ou mais , SARS-CoV-2 , Melanoma Maligno Cutâneo
9.
J Neurovirol ; 30(1): 22-38, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38189894

RESUMO

Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.


Assuntos
Barreira Hematoencefálica , Esclerose Múltipla , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Animais , Esclerose Múltipla/virologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Camundongos , Junções Íntimas/virologia , Junções Íntimas/metabolismo , Permeabilidade Capilar , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia
10.
J Neurovirol ; 30(3): 215-228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922550

RESUMO

The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.


Assuntos
Camundongos Endogâmicos C57BL , Microglia , Vírus da Hepatite Murina , Doenças Neuroinflamatórias , Proteínas PrPC , Animais , Vírus da Hepatite Murina/patogenicidade , Camundongos , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/virologia , Microglia/patologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Replicação Viral , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Linhagem Celular , Humanos , Modelos Animais de Doenças , Proteínas Priônicas
11.
Microb Pathog ; 195: 106901, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218378

RESUMO

Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , Humanos , Barreira Hematoencefálica/virologia , Animais , Vírus/patogenicidade , Vírus/classificação , Viroses/virologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpesvirus Humano 3/fisiologia , Enterovirus/patogenicidade , Enterovirus/fisiologia
12.
Parasitology ; 151(4): 412-420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443998

RESUMO

The incidences of multiple sclerosis have risen worldwide, yet neither the trigger nor efficient treatment is known. Some research is dedicated to looking for treatment by parasites, mainly by helminths. However, little is known about the effect of helminths that infect the nervous system. Therefore, we chose the neurotropic avian schistosome Trichobilharzia regenti, which strongly promotes M2 polarization and tissue repair in the central nervous system, and we tested its effect on the course of experimental autoimmune encephalomyelitis (EAE) in mice. Surprisingly, the symptoms of EAE tended to worsen after the infection with T. regenti. The infection did not stimulate tissue repair, as indicated by the similar level of demyelination. Eosinophils heavily infiltrated the infected tissue, and the microglia number increased as well. Furthermore, splenocytes from T. regenti-infected EAE mice produced more interferon (IFN)-γ than splenocytes from EAE mice after stimulation with myelin oligodendrocyte glycoprotein. Our research indicates that the combination of increased eosinophil numbers and production of IFN-γ tends to worsen the EAE symptoms. Moreover, the data highlight the importance of considering the direct effect of the parasite on the tissue, as the migrating parasite may further tissue damage and make tissue repair even more difficult.


Assuntos
Encefalomielite Autoimune Experimental , Interferon gama , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Feminino , Interferon gama/metabolismo , Baço/patologia , Baço/parasitologia , Baço/imunologia , Schistosomatidae/fisiologia , Eosinófilos/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia
13.
Subcell Biochem ; 106: 251-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159231

RESUMO

RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Criança , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Vírus do Nilo Ocidental/fisiologia , Barreira Hematoencefálica
14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873063

RESUMO

Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl-/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Infecção por Zika virus/patologia , Zika virus/metabolismo , Animais , Linhagem Celular , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/virologia , Flavivirus/genética , Infecções por Flavivirus/genética , Infecções por Flavivirus/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral/fisiologia , Zika virus/patogenicidade , Infecção por Zika virus/genética
15.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673746

RESUMO

Neuroinflammation is associated with several neurological disorders including temporal lobe epilepsy. Seizures themselves can induce neuroinflammation. In an in vivo model of epilepsy, the supplementation of brain-derived neurotropic factor (BDNF) and fibroblast growth factor-2 (FGF-2) using a Herpes-based vector reduced epileptogenesis-associated neuroinflammation. The aim of this study was to test whether the attenuation of the neuroinflammation obtained in vivo with BDNF and FGF-2 was direct or secondary to other effects, for example, the reduction in the severity and frequency of spontaneous recurrent seizures. An in vitro model of neuroinflammation induced by lipopolysaccharide (LPS, 100 ng/mL) in a mouse primary mixed glial culture was used. The releases of cytokines and NO were analyzed via ELISA and Griess assay, respectively. The effects of LPS and neurotrophic factors on cell viability were determined by performing an MTT assay. BDNF and FGF-2 were tested alone and co-administered. LPS induced a significant increase in pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and NO. BDNF, FGF-2, and their co-administration did not counteract these LPS effects. Our study suggests that the anti-inflammatory effect of BDNF and FGF-2 in vivo in the epilepsy model was indirect and likely due to a reduction in seizure frequency and severity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Citocinas , Fator 2 de Crescimento de Fibroblastos , Lipopolissacarídeos , Doenças Neuroinflamatórias , Animais , Camundongos , Doenças Neuroinflamatórias/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Células Cultivadas , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
J Neurovirol ; 29(2): 121-134, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097597

RESUMO

Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Viroses , Vírus , Infecção por Zika virus , Zika virus , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infecção por Zika virus/genética , Células Endoteliais , RNA Viral/metabolismo , SARS-CoV-2 , Encéfalo , Viroses/metabolismo , Organoides/metabolismo
17.
Brain Behav Immun ; 114: 61-77, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37516388

RESUMO

Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.

18.
Neuroendocrinology ; 113(1): 36-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35944495

RESUMO

INTRODUCTION: Use of high-dose androgens causes drastic changes in hormonal milieu and is associated with adverse medical, psychological, and cognitive effects. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors plays a critical role in neuroplasticity, with implications for cognitive function and mental health. The impact of long-term, high-dose androgen use on BDNF in a natural setting has not been investigated. This study examined the association between long-term androgen exposure and BDNF levels, and the links between BDNF, heavy resistance exercise, hormones, androgens, and mental health. METHODS: We measured serum levels of BDNF and sex steroid hormones in male weightlifters (N = 141) with a history of current (n = 59), past (n = 29), or no (n = 52) androgen use. All participants completed questionnaires assessing maximum strength and measures of anxiety and depression. Group differences in BDNF were tested using general linear models adjusting for age and associations between BDNF and strength, anxiety, and depression using Pearson's or Kendall's correlations. RESULTS: Both current (mean: 44.1 ng/mL [SD: 12.7]) and past (39.5 ng/mL [SD: 13.9]) androgen users showed lower serum BDNF levels compared to nonusing controls (51.5 [SD: 15.3], p < 0.001, ηp2 = 0.10). BDNF levels were negatively related to maximal strength, and with hormonal status in past androgen users, but no significant associations were found with measures of depression and anxiety. CONCLUSION: Lower circulating BDNF concentrations in current and past androgen users suggest that high-dose androgen exposure triggers persistent changes in BDNF expression. Further studies are needed to verify the relationship and its potential clinical implications.


Assuntos
Androgênios , Fator Neurotrófico Derivado do Encéfalo , Humanos , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônios Esteroides Gonadais , Ansiedade , Cognição
19.
J Cutan Pathol ; 50(3): 197-200, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36515639

RESUMO

Neurotropic melanoma is a rare type of malignant melanoma with nerve invasion or neural differentiation. Neurocristic cutaneous hamartoma is a rare, benign tumor of the skin and superficial soft tissue that arises from aberrant migration of neural crest cells. We report a rare case of a 74-year-old man with a clinically diagnosed giant congenital nevus of the right mid-back, histopathologically confirmed to be a neurocristic cutaneous hamartoma, who developed neurotropic spindle cell melanoma within the lesion. The patient was treated with serial re-excisions until clear margins were achieved.


Assuntos
Hamartoma , Melanoma , Nevo Pigmentado , Dermatopatias , Neoplasias Cutâneas , Masculino , Humanos , Idoso , Neoplasias Cutâneas/patologia , Melanoma/patologia , Nevo Pigmentado/patologia , Hamartoma/patologia , Dermatopatias/patologia , Melanoma Maligno Cutâneo
20.
Bioorg Chem ; 139: 106698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418784

RESUMO

Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA