Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 50(3): 692-706.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824326

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/microbiologia , Interleucina-17/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Microbiota/fisiologia , Animais , Bacteroides/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Prevotella/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(11): e2109667119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275791

RESUMO

SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.


Assuntos
Antígenos de Bactérias , Lipídeo A , Vacina contra a Peste , Peste , Proteínas Citotóxicas Formadoras de Poros , Yersinia pseudotuberculosis , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Dose Letal Mediana , Lipídeo A/genética , Lipídeo A/imunologia , Camundongos , Peste/prevenção & controle , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacina contra a Peste/imunologia , Plasmídeos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/imunologia
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440830

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/tratamento farmacológico , Animais , Tobramicina/farmacologia , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-8/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar
4.
Small ; : e2400847, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801399

RESUMO

In the realm of thrombosis treatment, bioengineered outer membrane vesicles (OMVs) offer a novel and promising approach, as they have rich content of bacterial-derived components. This study centers on OMVs derived from Escherichia coli BL21 cells, innovatively engineered to encapsulate the staphylokinase-hirudin fusion protein (SFH). SFH synergizes the properties of staphylokinase (SAK) and hirudin (HV) to enhance thrombolytic efficiency while reducing the risks associated with re-embolization and bleeding. Building on this foundation, this study introduces two cutting-edge microrobotic platforms: SFH-OMV@H for venous thromboembolism (VTE) treatment, and SFH-OMV@MΦ, designed specifically for cerebral venous sinus thrombosis (CVST) therapy. These platforms have demonstrated significant efficacy in dissolving thrombi, with SFH-OMV@H showcasing precise vascular navigation and SFH-OMV@MΦ effectively targeting cerebral thrombi. The study shows that the integration of these bioengineered OMVs and microrobotic systems marks a significant advancement in thrombosis treatment, underlining their potential to revolutionize personalized medical approaches to complex health conditions.

5.
Small ; 20(15): e2307066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009518

RESUMO

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Assuntos
Lipídeo A/análogos & derivados , Vacina contra a Peste , Peste , Yersinia pestis , Camundongos , Animais , Yersinia , Peste/prevenção & controle , Antígenos de Bactérias
6.
Small ; 20(20): e2308680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225709

RESUMO

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Exossomos , Alho , Microbioma Gastrointestinal , Nanopartículas , Diabetes Mellitus Tipo 2/metabolismo , Alho/química , Animais , Nanopartículas/química , Exossomos/metabolismo , Camundongos , Akkermansia , Humanos , Masculino , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia
7.
Crit Rev Microbiol ; 50(2): 127-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36597758

RESUMO

The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.


Assuntos
Doença de Alzheimer , Periodontite , Humanos , Porphyromonas gingivalis/genética , Adesinas Bacterianas/metabolismo , Periodontite/microbiologia , Ferro
8.
Microb Pathog ; 193: 106749, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879140

RESUMO

Bacteria-derived outer membrane vesicles (OMVs) can be engineered to incorporate foreign antigens. This study explored the potential of ClearColi™-derived OMVs as a natural adjuvant and a carrier (recombinant OMVs or rOMVs) for development of an innovative therapeutic vaccine candidate harboring HIV-1 Nef and Nef-Tat antigens. Herein, the rOMVs containing CytolysinA (ClyA)-Nef and ClyA-Nef-Tat fusion proteins were isolated from ClearColi™ strain. The presence of Nef and Nef-Tat proteins on their surface (rOMVNef and rOMVNef-Tat) was confirmed by western blotting after proteinase K treatment. Immune responses induced by Nef and Nef-Tat proteins emulsified with Montanide® ISA720 or mixed with OMVs, and also rOMVNef and rOMVNef-Tat were investigated in BALB/c mice. Additionally, the potency of splenocytes exposed to single-cycle replicable (SCR) HIV-1 virions was assessed for the secretion of cytokines in vitro. Our findings showed that the rOMVs as an antigen carrier (rOMVNef and rOMVNef-Tat) induced higher levels of IgG2a, IFN-γ and granzyme B compared to OMVs as an adjuvant (Nef + OMV and Nef-Tat + OMV), and also Montanide® ISA720 (Nef + Montanide and Nef-Tat + Montanide). Moreover, IFN-γ level in splenocytes isolated from mice immunized with rOMVNef-Tat was higher than other regimens after exposure to SCR virions. Generally, ClearColi™-derived rOMVs can serve as potent carriers for developing effective vaccines against HIV-1 infection.


Assuntos
Vacinas contra a AIDS , Adjuvantes Imunológicos , Infecções por HIV , HIV-1 , Camundongos Endogâmicos BALB C , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/genética , HIV-1/genética , HIV-1/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Feminino , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Citocinas/metabolismo , Imunoglobulina G/sangue , Anticorpos Anti-HIV/imunologia , Membrana Externa Bacteriana/metabolismo , Desenvolvimento de Vacinas , Humanos , Portadores de Fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Baço/imunologia
9.
Microb Pathog ; 188: 106562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307370

RESUMO

Bacterial outer membrane vesicles (OMVs) can package and deliver virulence factors into host cells, which is an important mechanism mediating host-pathogen interactions. It has been reported that small RNAs (sRNAs) can be packed into OMVs with varying relative abundance, which might affect the function and/or stability of host mRNAs. In this study, we used OptiPrep density gradient ultra-high-speed centrifugation to purify OMVs from Pseudomonas aeruginosa. Next, the sequences and abundance of sRNAs were detected by using Small RNA-Seq. In particular, sRNA4518698, sRNA2316613 and sRNA809738 were the three most abundant sRNAs in OMVs, which are all fragments of P. aeruginosa non-coding RNAs. sRNAs were shielded within the interior of OMVs and remained resistant to external RNase cleavage. The miRanda and RNAhybrid analysis demonstrated that those sRNAs could target a large number of host mRNAs, which were enriched in host immune responses by the functions of GO and KEGG enrichment. Experimentally, we demonstrated that the transfection of synthetic sRNA4518698, sRNA2316613, or sRNA809738 could reduce the expression of innate immune response genes in RAW264.7 cells. Together, we demonstrated that P. aeruginosa OMVs sRNAs can regulate innate immune responses. This study uncovered a mechanism in which the OMVs regulate host responses by transferring bacterial sRNAs.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/microbiologia , Imunidade Inata , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Interações Hospedeiro-Patógeno , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Stem Cells ; 41(5): 468-481, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827175

RESUMO

Mesenchymal stem cells (MSCs) therapy could efficiently attenuate LPS-induced acute lung injury and Pseudomonas aeruginosa (PA)-induced acute pneumonia. However, the underlying molecular mechanisms are still elusive. Here, we report that PA-derived outer membrane vesicles (OMVs) trigger mouse primary adipose tissue-derived mesenchymal stem cells (ASCs) to upregulate cyclic GMP-AMP synthase (cGAS) for sensing of double-stranded DNA (dsDNA) and the expression of interleukin (IL)-7. Loss of cGAS-interferon (IFN)-ß axis abolished the protective function of ASCs to PA-induced acute pneumonia in mice. Mechanistically, OMVs-delivered PA dsDNA primes cGAS-stimulator of interferon genes (STING) signaling pathway and increases the IL-7 production in ASCs via IFN-ß signaling. Meanwhile, dsDNA-primed ASCs furthermore amplifies IL-7 expression in primary lung epithelial cells and mouse lung epithelial (MLE)-12 cell line via increased IFN-ß. Our findings thus implicate a molecular mechanism that ASCs recognize PA-OMVs-derived dsDNA to secrete IL-7 via activating cGAS, suggesting a potential therapeutic strategy of ASCs transfer for PA-induced lung infection and inflammation.


Assuntos
Interferon Tipo I , Pneumonia , Camundongos , Animais , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Interleucina-7 , Proteínas de Membrana/genética , Interferon Tipo I/metabolismo , DNA/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pneumonia/terapia
11.
Trends Immunol ; 42(11): 1024-1036, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635395

RESUMO

All Gram-negative bacteria produce outer membrane vesicles (OMVs) which are minute spherical structures emanating from the bacterial outer membrane. OMVs are primarily enriched in lipopolysaccharide (LPS) and phospholipids, as well as outer membrane and periplasmic proteins. Recent research has provided convincing evidence for their role in multiple aspects of bacterial physiology and their interaction with vertebrate host cells. OMVs play vital roles in bacterial colonization, delivery of virulence factors, and disease pathogenesis. Here, we discuss the interactions of OMVs with mammalian host cells with a focus on how bacteria use OMVs to modulate host immune responses that eventually enable bacteria to evade host immunity.


Assuntos
Membrana Externa Bacteriana , Bactérias Gram-Negativas , Animais , Bactérias , Bactérias Gram-Negativas/metabolismo , Humanos , Lipopolissacarídeos , Mamíferos , Fatores de Virulência/metabolismo
12.
Protein Expr Purif ; 215: 106409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040272

RESUMO

The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.


Assuntos
Proteínas de Escherichia coli , Vacinas , Yersiniose , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Yersinia ruckeri/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteômica , Vacinas/metabolismo , Proteínas de Escherichia coli/genética
13.
Helicobacter ; 29(1): e13031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37997013

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are spontaneously released by Gram-negative bacteria and influence bacteria-host interactions by acting as a delivery system for bacterial components and by interacting directly with host cells. Helicobacter pylori, a pathogenic bacterium that chronically colonizes the human stomach, also sheds OMVs, and their impact on bacterial-mediated diseases is still being elucidated. MATERIALS AND METHODS: Transcriptomic profiling of the human gastric cell line MKN74 upon challenge with H. pylori OMVs compared to control and infected cells was performed using the Ion AmpliSeq™ Transcriptome Human Gene Expression Panel to understand the gene expression changes that human gastric epithelial cells might undergo when exposed to H. pylori OMVs. RESULTS: H. pylori OMVs per se modify the gene expression profile of gastric epithelial cells, adding another layer of (gene) regulation to the already complex host-bacteria interaction. The most enriched pathways include those related to amino acid metabolism, mitogen-activated protein kinase signaling, autophagy, and ferroptosis, whereas the cell cycle, DNA replication, and DNA repair were the most downregulated. The transcriptomic changes induced by OMVs were mostly similar to those induced by the parental bacteria, likely amplifying the effects of the bacterium itself. CONCLUSIONS: Our data provide a valuable portrayal of the transcriptomic remodeling of gastric cells induced by H. pylori OMVs. It demonstrates the breadth of cellular pathways and genes affected by OMVs, most previously unreported, which can be further dissected for the underlying molecular mediators and explored to understand the pathobiology of the full spectrum of H. pylori-mediated diseases.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiologia , Transcriptoma , Infecções por Helicobacter/microbiologia , Estômago , Perfilação da Expressão Gênica
14.
Microbiol Immunol ; 68(7): 224-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797913

RESUMO

Pathogenic bacteria form biofilms on epithelial cells, and most bacterial biofilms show increased production of membrane vesicles (MVs), also known as outer membrane vesicles in Gram-negative bacteria. Numerous studies have investigated the MVs released under planktonic conditions; however, the impact of MVs released from biofilms on immune responses remains unclear. This study aimed to investigate the characteristics and immunomodulatory activity of MVs obtained from both planktonic and biofilm cultures of Pseudomonas aeruginosa PAO1. The innate immune responses of macrophages to planktonic-derived MVs (p-MVs) and biofilm-derived MVs (b-MVs) were investigated by measuring the mRNA expression of proinflammatory cytokines. Our results showed that b-MVs induced a higher expression of inflammatory cytokines, including Il1b, Il6, and Il12p40, than p-MVs. The mRNA expression levels of Toll-like receptor 4 (Tlr4) differed between the two types of MVs, but not Tlr2. Polymyxin B significantly neutralized b-MV-mediated cytokine induction, suggesting that lipopolysaccharide of native b-MVs is the origin of the immune response. In addition, heat-treated or homogenized b-MVs induced the mRNA expression of cytokines, including Tnfa, Il1b, Il6, and Il12p40. Heat treatment of MVs led to increased expression of Tlr2 but not Tlr4, suggesting that TLR2 ligands play a role in detecting the pathogen-associated molecular patterns in lysed MVs. Taken together, our data indicate that potent immunomodulatory MVs are produced in P. aeruginosa biofilms and that this behavior could be a strategy for the bacteria to infect host cells. Furthermore, our findings would contribute to developing novel vaccines using MVs.


Assuntos
Biofilmes , Citocinas , Macrófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Biofilmes/crescimento & desenvolvimento , Citocinas/metabolismo , Camundongos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Imunidade Inata , Polimixina B/farmacologia , Células RAW 264.7 , Fatores Imunológicos/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Ann Clin Microbiol Antimicrob ; 23(1): 73, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164718

RESUMO

BACKGROUND: Klebsiella pneumoniae is the most commonly encountered pathogen in clinical practice. Widespread use of broad-spectrum antibiotics has led to the current global dissemination of carbapenem-resistant K. pneumoniae, which poses a significant threat to antibacterial treatment efficacy and public health. Outer membrane vesicles (OMVs) have been identified as carriers capable of facilitating the transfer of virulence and resistance genes. However, the role of OMVs in carbapenem-resistant K. pneumoniae under external pressures such as antibiotic and phage treatments remains unclear. METHODS: To isolate and purify OMVs under the pressure of phages and tigecycline, we subjected K. pneumoniae 0692 harboring plasmid-mediated blaNDM-1 and blaKPC-2 genes to density gradient separation. The double-layer plate method was used to isolate MJ1, which efficiently lysed K. pneumoniae 0692 cells. Transmission electron microscopy (TEM) was used to characterize the isolated phages and extract OMV groups for relevant morphological identification. Determination of protein content of each OMV group was conducted through bicinchoninic acid assay (BCA) and proteomic analysis. RESULTS: K. pneumoniae 0692 released OMVs in response to different environmental stimuli, which were characterized through TEM as having the typical structure and particle size of OMVs. Phage or tigecycline treatment alone resulted in a slight increase in the mean protein concentration of OMVs secreted by K. pneumoniae 0692 compared to that in the untreated group. However, when phage treatment was combined with tigecycline, there was a significant reduction in the average protein concentration of OMVs compared to tigecycline treatment alone. Proteomics showed that OMVs encapsulated numerous functional proteins and that under different external stresses of phages and tigecycline, the proteins carried by K. pneumoniae 0692-derived OMVs were significantly upregulated or downregulated compared with those in the untreated group. CONCLUSIONS: This study confirmed the ability of OMVs to carry abundant proteins and highlighted the important role of OMV-associated proteins in bacterial responses to phages and tigecycline, representing an important advancement in microbial resistance research.


Assuntos
Antibacterianos , Bacteriófagos , Carbapenêmicos , Klebsiella pneumoniae , Proteômica , Tigeciclina , Tigeciclina/farmacologia , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções por Klebsiella/microbiologia , Humanos , Vesículas Extracelulares/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
16.
Appl Microbiol Biotechnol ; 108(1): 238, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407600

RESUMO

Pasteurella multocida is an important bacterial pathogen that can cause diseases in both animals and humans. Its elevated morbidity and mortality rates in animals result in substantial economic repercussions within the livestock industry. The prevention of diseases caused by P. multocida through immunization is impeded by the absence of a safe and effective vaccine. Outer membrane vesicles (OMVs) secreted from the outer membrane of Gram-negative bacteria are spherical vesicular structures that encompass an array of periplasmic components in conjunction with a diverse assortment of lipids and proteins. These vesicles can induce antibacterial immune responses within the host. P. multocida has been shown to produce OMVs. Nonetheless, the precise characteristics and immunomodulatory functions of P. multocida OMVs have not been fully elucidated. In this study, OMVs were isolated from P. multocida using an ultrafiltration concentration technique, and their morphology, protein constitution, and immunomodulatory properties in RAW264.7 cells were studied. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed that the OMVs exhibited typical spherical and bilayered lipid vesicular architecture, exhibiting an average diameter of approximately 147.5 nm. The yield of OMVs was 2.6 × 1011 particles/mL. Proteomic analysis revealed a high abundance of membrane-associated proteins within P. multocida OMVs, with the capability to instigate the host's immune response. Furthermore, OMVs stimulated the proliferation and cellular uptake of macrophages and triggered the secretion of cytokines, such as TNF-ɑ, IL-1ß, IL-6, IL-10, and TGF-ß1. Consequently, our results indicated that OMVs from P. multocida could directly interact with macrophages and regulate their immune function in vitro. These results supported the prospective applicability of P. multocida OMVs as a platform in the context of vaccine development. KEY POINTS: • Preparation and characterization of P. multocida OMVs. • P. multocida OMVs possess a range of antigens and lipoproteins associated with the activation of the immune system. • P. multocida OMVs can activate the proliferation, internalization, and cytokine secretion of macrophages in vitro.


Assuntos
Pasteurella multocida , Animais , Humanos , Estudos Prospectivos , Proteômica , Macrófagos , Periplasma
17.
Appl Microbiol Biotechnol ; 108(1): 29, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159117

RESUMO

Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.


Assuntos
Vesículas Extracelulares , Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Proteínas da Membrana Bacteriana Externa/genética , Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Interações entre Hospedeiro e Microrganismos , Vesículas Extracelulares/metabolismo
18.
J Nanobiotechnology ; 22(1): 273, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773507

RESUMO

BACKGROUND: The outer membrane vesicles (OMVs) produced by Gram-negative bacteria can modulate the immune system and have great potentials for bacterial vaccine development. RESULTS: A highly active Acinetobacter baumannii phage lysin, LysP53, can stimulate the production of OMVs after interacting with A. baumannii, Escherichia coli, and Salmonella. The OMVs prepared by the lysin (LOMVs) from A. baumannii showed better homogeneity, higher protein yield, lower endotoxin content, and lower cytotoxicity compared to the naturally produced OMVs (nOMVs). The LOMVs contain a significantly higher number of cytoplasmic and cytoplasmic membrane proteins but a smaller number of periplasmic and extracellular proteins compared to nOMVs. Intramuscular immunization with either LOMVs or nOMVs three times provided robust protection against A. baumannii infections in both pneumonia and bacteremia mouse models. Intranasal immunization offered good protection in the pneumonia model but weaker protection (20-40%) in the bacteremia model. However, with a single immunization, LOMVs demonstrated better protection than the nOMVs in the pneumonia mouse model. CONCLUSIONS: The novel lysin approach provides a superior choice compared to current methods for OMV production, especially for vaccine development.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Animais , Infecções por Acinetobacter/prevenção & controle , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Vacinas Bacterianas/imunologia , Imunização , Vesículas Extracelulares , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Modelos Animais de Doenças , Humanos , Administração Intranasal , Proteínas Virais
19.
Oral Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696515

RESUMO

OBJECTIVE: This study aimed to assess the effects of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs) in chronic periodontitis and explore the underlying mechanism involved. METHODS: In vitro, Pg-OMVs were incubated with Ea.hy926 (vessel endothelial cells, ECs) to evaluate their effects on endothelial functions and to investigate the underlying mechanism. The effects of endothelial dysfunction on MG63 osteoblast-like cells were verified using an indirect co-culture method. For in vivo studies, micro-CT was conducted to identify alveolar bone mass. Immunofluorescence staining was conducted to confirm the levels of stimulator of interferon genes (STING) in the blood vessel and the number of Runx2+ cells around the alveolar bone. RESULTS: Pg-OMVs were endocytosed by ECs, leading to endothelial dysfunction. The cGAS-STING-TBK1 pathway was activated in ECs, which subsequently inhibited MG63 migration and early osteogenesis differentiation. In vivo, Pg-OMVs promoted alveolar bone resorption, increased STING levels in the blood vessel, and decreased Runx2+ cells around the alveolar bone. CONCLUSIONS: Pg-OMVs caused endothelial dysfunction and activated the cGAS-STING-TBK1 signal cascade in ECs, thereby impairing ECs-mediated osteogenesis. Furthermore, Pg-OMVs aggregated alveolar bone loss and altered the blood vessel-mediated osteogenesis with elevated STING.

20.
Semin Immunol ; 50: 101433, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33309166

RESUMO

Outer Membrane Vesicles (OMV) have received increased attention in recent years as a vaccine platform against bacterial pathogens. OMV from Neisseria meningitidis serogroup B have been extensively explored. Following the success of the MeNZB OMV vaccine in controlling an outbreak of N. meningitidis B in New Zealand, additional research and development resulted in the licensure of the OMV-containing four-component 4CMenB vaccine, Bexsero. This provided broader protection against multiple meningococcal B strains. Advances in the field of genetic engineering have permitted further improvements in the platform resulting in increased yields, reduced endotoxicity and decoration with homologous and heterologous antigens to enhance immuno genicity and provide broader protection. The OMV vaccine platform has been extended to many other pathogens. In this review, we discuss progress in the development of the OMV vaccine delivery platform, highlighting successful applications, together with potential challenges and gaps.


Assuntos
Membrana Externa Bacteriana/imunologia , Vacinas Bacterianas/imunologia , Infecções Meningocócicas/imunologia , Neisseria meningitidis/fisiologia , Animais , Engenharia Genética , Humanos , Imunidade Heteróloga , Imunogenicidade da Vacina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA