Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(10): 203, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105847

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS: Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS: Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION: An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.


Assuntos
Células Dendríticas , Receptores de Antígenos Quiméricos , Fator de Necrose Tumoral alfa , Humanos , Animais , Camundongos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Receptores de Antígenos Quiméricos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Mucina-1/imunologia , Mucina-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Imunoterapia Adotiva/métodos , Apoptose , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Camundongos SCID
2.
Rinsho Ketsueki ; 63(9): 1335-1343, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36198560

RESUMO

Patient-derived xenograft (PDX) models have gained attention due to their wide applications in basic research and drug development, and due to the increase in requirements for pathological analysis and anticancer drug evaluation. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased cells has contributed to the considerable progress in understanding the human pathophysiology. The PDX model is one of the most important tools to bridge the gap between traditional animal models and the clinical trials. PDX not only recapitulates human disease in vivo, but also multiplies the tumor cells. Therefore, efforts were made internationally to develop a PDX bank for leukemias and solid tumors for future research and experimentation. PDX might be an ideal model to simulate actual human diseases for cancer research; however, some challenges still persist. Thus, this review aimed to summarize the developmental history of immune-deficient mice, the efforts of overcoming PDX limitations, PDX model applications for preclinical research, and the current attempts to establish domestic leukemia PDX bank in Japan.


Assuntos
Leucemia , Neoplasias , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Leucemia/terapia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Cancer ; 148(1): 193-202, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32984947

RESUMO

To generate a reliable preclinical model system exhibiting the molecular features of salivary adenoid cystic carcinoma (ACC) whose biology is still unclear due to the paucity of stable cell cultures. To develop new in vitro and in vivo models of ACC, the techniques of organoid culture and patient-derived tumor xenograft (PDX), which have attracted attention in other malignancies in recent years, were applied. Tumor specimens from surgically resected salivary ACC were proceeded for the preparation of PDX and organoid culture. The orthotopic transplantation of patient-derived or PDX-derived organoids was demonstrated into submandibular glands of NSG mice and those histology was evaluated. PDX-derived organoid cells were evaluated for the presence of MYB-mediated fusion genes and proceeded for in vitro drug sensitivity assay. Human ACC-derived organoids were successfully generated in three-dimensional culture and confirmed the ability of these cells to form tumors by orthotopic injection. Short-term organoid cell cultures from two individual ACC PDX tumors were also established that maintain the characteristic MYBL1 translocation and histological features of the original parent and PDX tumors. Finally, the establishment of drug sensitivity tests on these short-term cultured cells was confirmed using three different agents. This is the first to report an approach for the generation of human ACC-derived organoids as in vitro and in vivo cancer models, providing insights into understanding of the ACC biology and creating personalized therapy design for patients with ACC.


Assuntos
Carcinoma Adenoide Cístico/patologia , Cultura Primária de Células/métodos , Neoplasias das Glândulas Salivares/patologia , Animais , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/cirurgia , Feminino , Humanos , Masculino , Camundongos , Proteínas de Fusão Oncogênica/genética , Organoides , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myb/genética , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/cirurgia , Glândulas Salivares/patologia , Glândulas Salivares/cirurgia , Transativadores/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Toxicol Pathol ; 33(3): 153-160, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32764840

RESUMO

Tumor research has largely relied on xenograft models created by the engraftment of cultured cell lines derived from tumor tissues into immunodeficient mice for in vivo studies. Like in vitro models, such models retain the ability of tumor cells to continuously proliferate, so they have been used to predict the clinical relevance of studies on proliferating cells. However, these models are composed of a limited population of tumor cells, which include only those tumor cells that are able to adapt to culture conditions, and thus they do not reflect the diversity and heterogeneity of tumors. This, at least in part, explains the poor predictivity of non-clinical data in the research and development of molecularly targeted drugs. Recently, research focus has been directed towards patient-derived xenograft (PDX) models created by directly engrafting tumor tissues, which have not been cultured in vitro, into immunodeficient mice. PDX models reflect the diversity and heterogeneity of tumors, and the evidence they provide can be verified in the patient tissues from which they were derived originally. PDX models are anticipated to efficiently bridge non-clinical and clinical data in translational research. Based on the evidence obtained from our research experience, this review describes the characteristics of PDX models for acting as tumor models, and elucidates the points to consider when attempting to establish these models.

5.
Front Immunol ; 14: 1294814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162643

RESUMO

Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment and are considered potential targets for cancer immunotherapy. To examine the antitumor effects of agents targeting human TAMs in vivo, we here established preclinical tumor xenograft models based on immunodeficient mice that express multiple human cytokines and have been reconstituted with a human immune system by transplantation of human CD34+ hematopoietic stem and progenitor cells (HIS-MITRG mice). HIS-MITRG mice supported the growth of both human cell line (Raji)- and patient-derived B cell lymphoma as well as the infiltration of human macrophages into their tumors. We examined the potential antitumor action of an antibody to human SIRPα (SE12C3) that inhibits the interaction of CD47 on tumor cells with SIRPα on human macrophages and thereby promotes Fcγ receptor-mediated phagocytosis of the former cells by the latter. Treatment with the combination of rituximab (antibody to human CD20) and SE12C3 inhibited Raji tumor growth in HIS-MITRG mice to a markedly greater extent than did rituximab monotherapy. This enhanced antitumor effect was dependent on human macrophages and attributable to enhanced rituximab-dependent phagocytosis of lymphoma cells by human macrophages. Treatment with rituximab and SE12C3 also induced reprogramming of human TAMs toward a proinflammatory phenotype. Furthermore, the combination treatment essentially prevented the growth of patient-derived diffuse large B cell lymphoma in HIS-MITRG mice. Our findings thus support the study of HIS-MITRG mice as a model for the preclinical evaluation in vivo of potential therapeutics, such as antibodies to human SIRPα, that target human TAMs.


Assuntos
Antígenos de Diferenciação , Neoplasias , Humanos , Camundongos , Animais , Rituximab/farmacologia , Rituximab/uso terapêutico , Linhagem Celular Tumoral , Anticorpos , Imunoterapia , Modelos Animais de Doenças , Neoplasias/terapia
6.
Exp Anim ; 70(2): 225-235, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33473097

RESUMO

Malignant peritoneal mesothelioma (MPM) is a rare malignancy with few experimental models. This study used the human surgical specimen to establish MPM patient-derived xenograft (PDX) models and primary cell lines to provide a study platform for MPM in vitro and in vivo, and conducted histopathological analysis. Our study used the experimental peritoneal cancer index (ePCI) score to evaluate gross pathology, and the results showed that the ePCI score of the female and male nude mice were 8.80 ± 1.75 and 9.20 ± 1.81 (P=0.6219), respectively. The Hematoxylin and eosin (HE) staining of animal models showed that the tumor was epithelioid mesothelioma and invaded multiple organs. Immunohistochemistry (IHC) staining showed that Calretinin, Cytokeratin 5/6, WT-1 and Ki-67 were all positive. The Swiss-Giemsa and Immunofluorescence (IF) staining of primary cell lines were also consistent with the pathological characteristics of mesothelioma. We also performed the whole-exome sequencing (WES) to identify the mutant genes between models and the patient. And the results showed that 21 mutant genes were shared between the two groups, and the genes related to tumorigenesis and development including BAP1, NF2, MTBP, NECTIN2, CDC23, LRPPRC, TRIM25, and DHRS2. In conclusion, the PDX models and primary cell lines of MPM were successfully established with the epithelioid mesothelioma identity confirmed by histopathological evidence. Moreover, our study has also illustrated the shared genomic profile between models and the patient.


Assuntos
Linhagem Celular Tumoral/patologia , Xenoenxertos/patologia , Mesotelioma Maligno/patologia , Camundongos , Doenças Peritoneais/patologia , Animais , Modelos Animais de Doenças , Células Epitelioides/patologia , Feminino , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade
7.
Front Oncol ; 11: 645698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777805

RESUMO

While numerous therapies are highly efficacious in early-stage breast cancers and in particular subsets of breast cancers, therapeutic resistance and metastasis unfortunately arise in many patients. In many cases, tumors that are resistant to standard of care therapies, as well as tumors that have metastasized, are treatable but incurable with existing clinical strategies. Both therapy resistance and metastasis are multi-step processes during which tumor cells must overcome diverse environmental and selective hurdles. Mechanisms by which tumor cells achieve this are numerous and include acquisition of invasive and migratory capabilities, cell-intrinsic genetic and/or epigenetic adaptations, clonal selection, immune evasion, interactions with stromal cells, entering a state of dormancy or senescence, and maintaining self-renewal capacity. To overcome therapy resistance and metastasis in breast cancer, the ability to effectively model each of these mechanisms in the laboratory is essential. Herein we review historic and the current state-of-the-art laboratory model systems and experimental approaches used to investigate breast cancer metastasis and resistance to standard of care therapeutics. While each model system has inherent limitations, they have provided invaluable insights, many of which have translated into regimens undergoing clinical evaluation. We will discuss the limitations and advantages of a variety of model systems that have been used to investigate breast cancer metastasis and therapy resistance and outline potential strategies to improve experimental modeling to further our knowledge of these processes, which will be crucial for the continued development of effective breast cancer treatments.

8.
Diagnostics (Basel) ; 9(3)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540126

RESUMO

An understanding of the molecular pathogenesis and heterogeneity of ovarian cancer holds promise for the development of early detection strategies and novel, efficient therapies. In this review, we discuss the advantages and limitations of animal models available for basic and preclinical studies. The fruit fly model is suitable mainly for basic research on cellular migration, invasiveness, adhesion, and the epithelial-to-mesenchymal transition. Higher-animal models allow to recapitulate the architecture and microenvironment of the tumor. We discuss a syngeneic mice model and the patient derived xenograft model (PDX), both useful for preclinical studies. Conditional knock-in and knock-out methodology allows to manipulate selected genes at a given time and in a certain tissue. Such models have built our knowledge about tumor-initiating genetic events and cell-of-origin of ovarian cancers; it has been shown that high-grade serous ovarian cancer may be initiated in both the ovarian surface and tubal epithelium. It is postulated that clawed frog models could be developed, enabling studies on tumor immunity and anticancer immune response. In laying hen, ovarian cancer develops spontaneously, which provides the opportunity to study the genetic, biochemical, and environmental risk factors, as well as tumor initiation, progression, and histological origin; this model can also be used for drug testing. The chick embryo chorioallantoic membrane is another attractive model and allows the study of drug response.

9.
Artigo em Zh | WPRIM | ID: wpr-703184

RESUMO

Objective To evaluate the therapeutic effect of chemotherapeutic drugs on pancreatic carcinoma based on patient-derived xenograft(PDX)models,and to screen an individualized treatment strategy. Methods Fresh human pancreatic carcinoma tissues were subcutaneously transplanted into nude mice to establish PDX models which could be stab-ly passaged. The traceability of PDX models was determined by STR analysis. The PDX models were treated with three dif-ferent clinical chemotherapeutic drugs oxaliplatin, gemcitabine and irinotecan, respectively, and the tumor volumes were measured at different times. The therapeutic effect of those drugs was assessed by TGD mathematical model and plasma CA19-9 test. Results The traceability of patient-derived xenograft samples was up to 99.99%. Compared with the con-trol group,the treatment with irinotecan and gemcitabine inhibited tumor growth significantly(P=0.001), and gemcit-abine had even better result. The minimum toxic effect in the mice was induced by irinotecan treatment,followed by gem-citabine treatment. Conclusions Pancreatic carcinoma PDX models are successfully established and can be stably pas-saged. Gemcitabine shows the most inhibitory effect on tumor growth based on TGD mathematical model assessment, and deserves to be recommended as the preferred drug for individual treatment of pancreatic carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA