Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(1): 135-149.e14, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883797

RESUMO

Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.


Assuntos
Autofagia/fisiologia , Ácidos Graxos/metabolismo , Fagossomos/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Fosfolipídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 82(19): 3677-3692.e11, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044902

RESUMO

The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lipossomos/metabolismo , Mamíferos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
3.
Annu Rev Cell Dev Biol ; 30: 169-206, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150009

RESUMO

The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.


Assuntos
Transporte Proteico/fisiologia , Rede trans-Golgi/fisiologia , Fator 1 de Ribosilação do ADP/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Transporte/fisiologia , Polaridade Celular , Citosol/fisiologia , Humanos , Lipídeos de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Modelos Moleculares , Fosfolipídeos/fisiologia , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/imunologia , Relação Estrutura-Atividade , Vesículas Transportadoras/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Rede trans-Golgi/imunologia
4.
Genes Dev ; 34(7-8): 511-525, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115406

RESUMO

The Hippo pathway is a master regulator of tissue homeostasis and organ size. NF2 is a well-established tumor suppressor, and loss of NF2 severely compromises Hippo pathway activity. However, the precise mechanism of how NF2 mediates upstream signals to regulate the Hippo pathway is not clear. Here we report that, in mammalian cells, NF2's lipid-binding ability is critical for its function in activating the Hippo pathway in response to osmotic stress. Mechanistically, osmotic stress induces PI(4,5)P2 plasma membrane enrichment by activating the PIP5K family, allowing for NF2 plasma membrane recruitment and subsequent downstream Hippo pathway activation. An NF2 mutant deficient in lipid binding is unable to activate the Hippo pathway in response to osmotic stress, as measured by LATS and YAP phosphorylation. Our findings identify the PIP5K family as novel regulators upstream of Hippo signaling, and uncover the importance of phosphoinositide dynamics, specifically PI(4,5)P2, in Hippo pathway regulation.


Assuntos
Homeostase/fisiologia , Neurofibromina 2/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Via de Sinalização Hippo , Humanos , Camundongos , Neurofibromina 2/genética , Pressão Osmótica/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Sinalização YAP
5.
Immunity ; 49(3): 427-437.e4, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30217409

RESUMO

How cytotoxic T lymphocytes (CTLs) sense T cell receptor (TCR) signaling in order to specialize an area of plasma membrane for granule secretion is not understood. Here, we demonstrate that immune synapse formation led to rapid localized changes in the phosphoinositide composition of the plasma membrane, both reducing phosphoinositide-4-phosphate (PI(4)P), PI(4,5)P2, and PI(3,4,5)P3 and increasing diacylglycerol (DAG) and PI(3,4)P2 within the first 2 min of synapse formation. These changes reduced negative charge across the synapse, triggering the release of electrostatically bound PIP5 kinases that are required to replenish PI(4,5)P2. As PI(4,5)P2 decreased, actin was depleted from the membrane, allowing secretion. Forced localization of PIP5Kß across the synapse prevented actin depletion, blocking both centrosome docking and secretion. Thus, PIP5Ks act as molecular sensors of TCR activation, controlling actin recruitment across the synapse, ensuring exquisite co-ordination between TCR signaling and CTL secretion.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Sinapses Imunológicas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Degranulação Celular , Linhagem Celular , Citotoxicidade Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
6.
Immunol Rev ; 317(1): 166-186, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37144896

RESUMO

The pulmonary surfactant system of the lung is a lipid and protein complex, which regulates the biophysical properties of the alveoli to prevent lung collapse and the innate immune system in the lung. Pulmonary surfactant is a lipoprotein complex consisting of 90% phospholipids and 10% protein, by weight. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), exist at very high concentrations in the extracellular alveolar compartments. We have reported that one of the most dominant molecular species of PG, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and PI inhibit inflammatory responses induced by multiple toll-like receptors (TLR2/1, TLR3, TLR4, and TLR2/6) by interacting with subsets of multiprotein receptor components. These lipids also exert potent antiviral effects against RSV and influenza A, in vitro, by inhibiting virus binding to host cells. POPG and PI inhibit these viral infections in vivo, in multiple animal models. Especially noteworthy, these lipids markedly attenuate SARS-CoV-2 infection including its variants. These lipids are natural compounds that already exist in the lung and, thus, are less likely to cause adverse immune responses by hosts. Collectively, these data demonstrate that POPG and PI have strong potential as novel therapeutics for applications as anti-inflammatory compounds and preventatives, as treatments for broad ranges of RNA respiratory viruses.


Assuntos
COVID-19 , Surfactantes Pulmonares , Animais , Humanos , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Receptor 2 Toll-Like , SARS-CoV-2 , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fosfatidilgliceróis/uso terapêutico , Fosfatidilgliceróis/farmacologia
7.
EMBO J ; 41(23): e110771, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300838

RESUMO

Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.


Assuntos
Autofagossomos , Fosfolipídeos , Autofagossomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Colina/metabolismo , Cistina Difosfato/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(51): e2309900120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085774

RESUMO

How acute respiratory distress syndrome progresses from underlying disease or trauma is poorly understood, and there are no generally accepted treatments resulting in a 40% mortality rate. However, during the inflammation that accompanies this disease, the phospholipase A2 concentration increases in the alveolar fluids leading to the hydrolysis of bacterial, viral, and lung surfactant phospholipids into soluble lysolipids. We show that if the lysolipid concentration in the subphase reaches or exceeds its critical micelle concentration, the surface tension, γ, of dipalmitoyl phosphatidylcholine (DPPC) or Curosurf monolayers increases and the dilatational modulus, [Formula: see text], decreases to that of a pure lysolipid interface. This is consistent with DPPC being solubilized in lysolipid micelles and being replaced by lysolipid at the interface. These changes lead to [Formula: see text] which is the criterion for the Laplace instability that can lead to mechanical instabilities during lung inflation, potentially causing alveolar collapse. These findings provide a mechanism behind the alveolar collapse and uneven lung inflation during ARDS.


Assuntos
Surfactantes Pulmonares , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Fosfolipases A2 , Tensoativos
9.
J Biol Chem ; 300(3): 105755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364890

RESUMO

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Assuntos
Proteínas Reguladoras de Apoptose , Basigina , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos , Humanos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Basigina/química , Membrana Celular/metabolismo , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nanopartículas/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos , Conformação Proteica em alfa-Hélice , Imagem Individual de Molécula
10.
Plant J ; 117(3): 956-971, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37937773

RESUMO

Anionic phospholipids (PS, PA, PI, PIPs) are low-abundant phospholipids with impactful functions in cell signaling, membrane trafficking and cell differentiation processes. They can be quickly metabolized and can transiently accumulate at defined spots within the cell or an organ to respond to physiological or environmental stimuli. As even a small change in their composition profile will produce a significant effect on biological processes, it is crucial to develop a sensitive and optimized analytical method to accurately detect and quantify them. While thin-layer chromatography (TLC) separation coupled with gas chromatography (GC) detection methods already exist, they do not allow for precise, sensitive, and accurate quantification of all anionic phospholipid species. Here we developed a method based on high-performance liquid chromatography (HPLC) combined with two-dimensional mass spectrometry (MS2 ) by MRM mode to detect and quantify all molecular species and classes of anionic phospholipids in one shot. This method is based on a derivatization step by methylation that greatly enhances the ionization, the separation of each peak, the peak resolution as well as the limit of detection and quantification for each individual molecular species, and more particularly for PA and PS. Our method universally works in various plant samples. Remarkably, we identified that PS is enriched with very long chain fatty acids in the roots but not in aerial organs of Arabidopsis thaliana. Our work thus paves the way for new studies on how the composition of anionic lipids is finely tuned during plant development and environmental responses.


Assuntos
Arabidopsis , Fosfolipídeos , Fosfolipídeos/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Arabidopsis/metabolismo
11.
Mol Microbiol ; 121(5): 865-881, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38366323

RESUMO

In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.


Assuntos
Coenzima A Ligases , Ácidos Graxos , Staphylococcus aureus , Aldeídos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas , Ácidos Carboxílicos/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/enzimologia
12.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655851

RESUMO

Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias , Humanos , Membranas Mitocondriais , Fosfolipídeos , Transporte Biológico , Doenças Raras
13.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37073556

RESUMO

Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.


Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
14.
Genes Cells ; 29(4): 347-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351722

RESUMO

CdsA is a CDP-diacylglycerol synthase essential for phospholipid and glycolipid MPIase biosynthesis, and therefore for growth. The initiation codon of CdsA has been assigned as "TTG," while methionine at the 37th codon was reported to be an initiation codon in the original report. Since a vector containing the open reading frame starting with "TTG" under a controllable promoter complemented the cdsA knockout, "TTG" could function as an initiation codon. However, no evidence supporting that this "TTG" is the sole initiation codon has been reported. We determined the initiation codon by examining the ability of mutants around the N-terminal region to complement cdsA mutants. Even if the "TTG" was substituted with a stop codon, the clear complementation was observed. Moreover, the clones with multiple mutations of stop codons complemented the cdsA mutant up to the 37th codon, indicating that cdsA possesses multiple codons that can function as initiation codons. We constructed an experimental system in which the chromosomal expression of cdsA can be analyzed. By means of this system, we found that the cdsA mutant with substitution of "TTG" with a stop codon is fully functional. Thus, we concluded that CdsA contains multiple initiation codons.


Assuntos
Diacilglicerol Colinofosfotransferase , Glicolipídeos , Fosfolipídeos , Diacilglicerol Colinofosfotransferase/metabolismo , Códon de Iniciação/genética , Códon de Terminação/genética , Biossíntese de Proteínas
15.
FASEB J ; 38(8): e23619, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661031

RESUMO

Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles. Consequently, common components of exosomes may play a role in their function. We have proposed that membrane phospholipids could be a common denominator in the effect of exosomes on cellular functions. In this regard, we have previously shown that liposomes made of phosphatidylcholine (PC) or phosphatidylserine (PS) induced a robust alteration of macrophage (Mϕ) gene expression. We herewith report that these two phospholipids modulate gene expression in Mϕs by different mechanisms. PS alters cellular responses by the interaction with surface receptors, particularly CD36. In contrast, PC is captured by a receptor-independent process and likely triggers an activity within endocytic vesicles. Despite this difference in the capture mechanisms, both lipids mounted similar gene expression responses. This investigation suggests that multiple mechanisms mediated by membrane phospholipids could be participating in the alteration of cellular functions by exosomes.


Assuntos
Exossomos , Macrófagos , Fosfatidilserinas , Macrófagos/metabolismo , Animais , Camundongos , Fosfatidilserinas/metabolismo , Exossomos/metabolismo , Fosfatidilcolinas/metabolismo , Inflamação/metabolismo , Fosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Antígenos CD36/metabolismo , Antígenos CD36/genética , Lipossomos
16.
FASEB J ; 38(14): e23815, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989587

RESUMO

To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.


Assuntos
Envelhecimento , Encéfalo , Ácidos Graxos , Camundongos Knockout , Receptores de Adiponectina , Animais , Camundongos , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Envelhecimento/metabolismo , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Masculino , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo
17.
FASEB J ; 38(1): e23328, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019192

RESUMO

Acetaminophen (APAP) is a double-edged sword, mainly depending on the dosage. A moderate dose of APAP is effective for fever and pain relief; however, an overdose induces acute liver injury. The mechanism underlying APAP-induced acute liver failure is unclear, and its treatment is limited. A recent report has shown that several oxidized phospholipids are associated with APAP-induced acute liver failure. Lysophosphatidylcholine acyltransferase 3 (Lpcat3, Lplat12), which is highly expressed in the liver, preferentially catalyzes the incorporation of arachidonate into lysophospholipids (PLs). In the present study, we investigated the roles of Lpcat3 on APAP-induced acute liver injury using liver-specific Lpcat3-knockout mice. Hepatic Lpcat3 deficiency reduced the degree of APAP-induced necrosis of hepatocytes around Zone 3 and ameliorated the elevation of hepatic injury serum marker levels, and prolonged survival. Lipidomic analysis showed that the accumulation of oxidized and hydroperoxidized phospholipids was suppressed in Lpcat3-knockout mice. The amelioration of APAP-induced acute liver injury was due not only to the reduction in the lipid synthesis of arachidonic acid PLs because of Lpcat3 deficiency, but also to the promotion of the APAP detoxification pathway by facilitating the conjugation of glutathione and N-acetyl-p-benzoquinone imine. Our findings suggest that Lpcat3 is a potential therapeutic target for treating APAP-induced acute liver injury.


Assuntos
Acetaminofen , Falência Hepática Aguda , Animais , Camundongos , Acetaminofen/toxicidade , Hepatócitos , Camundongos Knockout , 1-Acilglicerofosfocolina O-Aciltransferase
18.
Artigo em Inglês | MEDLINE | ID: mdl-39087349

RESUMO

BACKGROUND: Clotting, leading to thrombosis, requires interactions of coagulation factors with the membrane aminophospholipids (aPLs) phosphatidylserine and phosphatidylethanolamine. Atherosclerotic cardiovascular disease (ASCVD) is associated with elevated thrombotic risk, which is not fully preventable using current therapies. Currently, the contribution of aPL to thrombotic risk in ASCVD is not known. Here, the aPL composition of circulating membranes in ASCVD of varying severity will be characterized along with the contribution of external facing aPL to plasma thrombin generation in patient samples. METHODS: Thrombin generation was measured using a purified factor assay on platelet, leukocyte, and extracellular vesicles (EVs) from patients with acute coronary syndrome (n=24), stable coronary artery disease (n=18), and positive risk factor (n=23) and compared with healthy controls (n=24). aPL composition of resting/activated platelet and leukocytes and EV membranes was determined using lipidomics. RESULTS: External facing aPLs were detected on EVs, platelets, and leukocytes, elevating significantly following cell activation. Thrombin generation was higher on the surface of EVs from patients with acute coronary syndrome than healthy controls, along with increased circulating EV counts. Thrombin generation correlated significantly with externalized EV phosphatidylserine, plasma EV counts, and total EV membrane surface area. In contrast, aPL levels and thrombin generation from leukocytes and platelets were not impacted by disease, although circulating leukocyte counts were higher in patients. CONCLUSIONS: The aPL membrane of EV supports an elevated level of thrombin generation in patient plasma in ASCVD. Leukocytes may also play a role although the platelet membrane did not seem to contribute. Targeting EV formation/clearance and developing strategies to prevent the aPL surface of EV interacting with coagulation factors represents a novel antithrombotic target in ASCVD.

19.
Mol Cell ; 66(2): 180-193.e8, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28366644

RESUMO

S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell.


Assuntos
Histonas/metabolismo , Fosfatidiletanolaminas/metabolismo , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Lisina/metabolismo , Metilação , Mutação , Estresse Oxidativo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , S-Adenosil-Homocisteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Transcrição Gênica
20.
Cell Mol Life Sci ; 81(1): 98, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386110

RESUMO

In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.


Assuntos
Neoplasias , Progesterona , Progesterona/farmacologia , Receptores de Progesterona/genética , Receptor alfa de Estrogênio , Progestinas/farmacologia , Ligantes , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA