Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(3): 1851-1864, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534737

RESUMO

Autism spectrum disorder (ASD) is thought to result from susceptibility genotypes and environmental risk factors. The offspring of women who experience pregnancy infection have an increased risk for autism. Maternal immune activation (MIA) in pregnant animals produces offspring with autistic behaviors, making MIA a useful model for autism. However, how MIA causes autistic behaviors in offspring is not fully understood. Here, we show that NKCC1 is critical for mediating autistic behaviors in MIA offspring. We confirmed that MIA induced by poly(I:C) infection during pregnancy leads to autistic behaviors in offspring. We further demonstrated that MIA offspring showed significant microglia activation, excessive dendritic spines, and narrow postsynaptic density (PSD) in their prefrontal cortex (PFC). Then, we discovered that these abnormalities may be caused by overexpression of NKCC1 in MIA offspring's PFCs. Finally, we ameliorated the autistic behaviors using PFC microinjection of NKCC1 inhibitor bumetanide (BTN) in MIA offspring. Our findings may shed new light on the pathological mechanisms for autism caused by pregnancy infection.

2.
Brain Behav Immun ; 116: 349-361, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142918

RESUMO

Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1ß and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Selênio , Camundongos , Animais , Feminino , Gravidez , Masculino , Humanos , Comportamento Animal/fisiologia , Selênio/farmacologia , Placenta , Modelos Animais de Doenças , Poli I-C/farmacologia , Suplementos Nutricionais
3.
Brain Behav Immun ; 121: 351-364, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089536

RESUMO

BACKGROUND: Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS: We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS: In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS: Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.

4.
Brain Behav Immun ; 118: 437-448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499210

RESUMO

Systemic activation of toll-like receptor 3 (TLR3) signaling using poly(I:C), a TLR3 agonist, drives ethanol consumption in several rodent models, while global knockout of Tlr3 reduces drinking in C57BL/6J male mice. To determine if brain TLR3 pathways are involved in drinking behavior, we used CRISPR/Cas9 genome editing to generate a Tlr3 floxed (Tlr3F/F) mouse line. After sequence confirmation and functional validation of Tlr3 brain transcripts, we injected Tlr3F/F male mice with an adeno-associated virus expressing Cre recombinase (AAV5-CMV-Cre-GFP) to knockdown Tlr3 in the medial prefrontal cortex, nucleus accumbens, or dorsal striatum (DS). Only Tlr3 knockdown in the DS decreased two-bottle choice, every-other-day (2BC-EOD) ethanol consumption. DS-specific deletion of Tlr3 also increased intoxication and prevented acute functional tolerance to ethanol. In contrast, poly(I:C)-induced activation of TLR3 signaling decreased intoxication in male C57BL/6J mice, consistent with its ability to increase 2BC-EOD ethanol consumption in these mice. We also found that TLR3 was highly colocalized with DS neurons. AAV5-Cre transfection occurred predominantly in neurons, but there was minimal transfection in astrocytes and microglia. Collectively, our previous and current studies show that activating or inhibiting TLR3 signaling produces opposite effects on acute responses to ethanol and on ethanol consumption. While previous studies, however, used global knockout or systemic TLR3 activation (which alter peripheral and brain innate immune responses), the current results provide new evidence that brain TLR3 signaling regulates ethanol drinking. We propose that activation of TLR3 signaling in DS neurons increases ethanol consumption and that a striatal TLR3 pathway is a potential target to reduce excessive drinking.


Assuntos
Etanol , Receptor 3 Toll-Like , Camundongos , Masculino , Animais , Receptor 3 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Etanol/farmacologia , Transdução de Sinais , Consumo de Bebidas Alcoólicas/metabolismo , Poli I-C/farmacologia
5.
Pharmacol Res ; 199: 107049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159785

RESUMO

Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.


Assuntos
Dronabinol , Viroses , Animais , Camundongos , Masculino , Feminino , Dronabinol/farmacologia , Encéfalo , Transmissão Sináptica , Neurônios
6.
Fish Shellfish Immunol ; 144: 109285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092095

RESUMO

Poly(I:C) is known as an agonist of the TLR3 receptor which could prime inflammation and elicit the host immune response, which is widely applied as adjuvant or antivirus treatment. However, the negative effects of poly(I:C) on regulating immune response to protect the host from inflammatory diseases remain largely unknown. Here, we establish an in vivo model to pre-treat zebrafish larvae with poly(I:C) at 2 dpf, then challenge them with LPS at 6 dpf, and find that poly(I:C) training could significantly alleviate the LPS challenge-induced septic shock and inflammatory phenotypes. Moreover, the poly(I:C)-trained larvae exhibit decreased number of macrophages, but not neutrophils, after secondary LPS challenge. Furthermore, training the larvae with poly(I:C) could elevate the transcripts of mTOR signaling and heighten the H3K4me3-mediated epigenetic modifications. And interestingly, we find that inhibiting the H3K4me3 modification, rather than mTOR signaling, could recover the number of macrophages in poly(I:C)-trained larvae, which is consistent with the observations of inflammatory phenotypes. Taken together, these results suggest that poly(I:C) training could induce epigenetic rewiring to mediate the anti-inflammatory response against secondary LPS challenge-induced septic shock through decreasing macrophages' number in vivo, which might expand our understanding of poly(I:C) in regulating fish immune response.


Assuntos
Lipopolissacarídeos , Choque Séptico , Animais , Lipopolissacarídeos/efeitos adversos , Peixe-Zebra , Larva , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Serina-Treonina Quinases TOR
7.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679344

RESUMO

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Octopodiformes , Receptores Toll-Like , Vibrio parahaemolyticus , Animais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiologia , Octopodiformes/genética , Octopodiformes/imunologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Filogenia , Perfilação da Expressão Gênica/veterinária , Poli I-C/farmacologia , Peptidoglicano/farmacologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Moléculas com Motivos Associados a Patógenos/farmacologia
8.
Immunol Invest ; : 1-15, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813886

RESUMO

INTRODUCTION: Here, we explored methods to generate anti-tumor bone marrow-derived macrophages (BMDM) and how delivery of the BMDM at early tumor sites could impact disease progression. METHODS: BMDM treated with IFN-γ, sCD40L, poly(I:C), and a combination of the three were assessed. RESULTS: Treatment with sCD40L had no significant impact on the BMDM. Treating BMDM with IFN-γ impacted IL-1ß, MHC Class II, and CD80 expression. While poly(I:C) treatment had a greater impact on the BMDM than IFN-γ when assessed by the in vitro assays, the BMDM treated with poly (I:C) had mixed results in vivo where they decreased growth of the EMT6 tumor, did not impact growth of the 168 tumor, and enhanced growth of the 4T1 tumor. The combination of poly(I:C), IFN-γ, and sCD40L had the greatest impact on the BMDM in vitro and in vivo. Treatment with all three agonists resulted in increased IL-1ß, TNF-α, and IL-12 expression, decreased expression of arginase and mrc, increased phagocytic activity, nitrite production, and MHC Class II and CD80 expression, and significantly impacted growth of the EMT6 and 168 murine mammary carcinoma models. DISCUSSION: Collectively, these data show that treating BMDM with poly(I:C), IFN-γ, and sCD40L generates BMDM with more consistent anti-tumor activity than BMDM generated with the individual agonists.

9.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857721

RESUMO

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Assuntos
Encéfalo , Cognição , Fenômenos do Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Modelos Animais de Doenças , Epigênese Genética , Poli I-C , Camundongos
10.
Small ; 19(46): e2303634, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37467294

RESUMO

Despite the rapid development of the immune checkpoint blockade (ICB) in melanoma treatment, the immunosuppressive tumor microenvironment (TME) still hinders the efficacy of immunotherapy. Recently, using agonists to modulate the TME have presented promising clinical responses in combination with ICB therapies. However, local intratumoral injection as the commonly used administration route for immune agonists would lead to low patient compliance. Herein, it is demonstrated that fluorocarbon modified chitosan (FCS) can self-assemble with immune adjuvant polyriboinosinic:polyribocytidylic acid (poly(I:C)), forming nanoparticles that can penetrate through cutaneous barriers to enable transdermal delivery. FCS/poly(I:C) can efficiently activate various types of cells presented on the transdermal route (through the skin into the TME), leading to IRF3-mediated IFN-ß induction in the activated cells for tumor repression. Furthermore, transdermal FCS/poly(I:C) treatment can significantly magnify the efficacy of the programmed cell death protein 1 (PD-1) blockade in melanoma treatment through activating the immunosuppressive TME. This study approach offered an attractive transdermal approach in combined with ICB therapy for combined immunotherapy, particularly suitable for melanoma treatment.


Assuntos
Quitosana , Fluorocarbonos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
11.
Cell Immunol ; 387: 104718, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068442

RESUMO

Natural killer (NK) cell phenotype and function are altered in patients with prostate cancer, and increased NK cell activity is associated with a better prognosis in patients with disease. For patients with advanced stage prostate cancer, immunotherapies are a promising approach when standard treatment options have been exhausted. With the rapid emergence of NK cell-based therapies, it is important to understand the mechanisms by which NK cells can be triggered to kill cancer cells that have developed immune-evasive strategies. Altering the cytokine profiles of advanced prostate cancer cells may be an area to explore when considering ways in which NK cell activation can be modulated. We have previously demonstrated that combining the cytokine, IL-27, with TLR3 agonist, poly(I:C), changes cytokine secretion in the advanced prostate cancer models, PC3 and DU145 cells. Herein, we extend our previous work to study the effect of primary human NK cells on prostate cancer cell death in an in vitro co-culture model. Stimulating PC3 and DU145 cells with IL-27 and poly(I:C) induced IFN-ß secretion, which was required for activation of primary human NK cells to kill these stimulated prostate cancer cells. PC3 cells were more sensitized to NK cell-mediated killing when compared to DU145 cells, which was attributed to differential levels of IFN-ß produced in response to stimulation with IL-27 and poly(I:C). IFN-ß increased granzyme B secretion and membrane-bound TRAIL expression by co-cultured NK cells. We further demonstrated that these NK cells killed PC3 cells in a partially TRAIL-dependent manner. This work provides mechanistic insight into how the cytotoxic function of NK cells can be improved to target cancer cells.


Assuntos
Antineoplásicos , Interleucina-27 , Neoplasias da Próstata , Masculino , Humanos , Interleucina-27/metabolismo , Células PC-3 , Células Matadoras Naturais/metabolismo , Antineoplásicos/farmacologia , Citocinas/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo
12.
Exp Eye Res ; 227: 109357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572167

RESUMO

To investigate the response to polyinosinic:polycytidylic acid [poly(I:C)], a double-stranded RNA Toll-like receptor 3 agonist that mimics viral infection, in the barrier function of two established human telomerase reverse transcriptase-immortalized cell lines, termed HCLE for the human corneal-limbal epithelial line and HCjE for the human conjunctival-epithelial line. In this study, HCLE and HCjE cells were used to evaluate the underlying mechanism of epithelial-cell barrier function regulation. Briefly, HCLE and HCjE cells were first cultured on 12-well Transwell® (Corning®) filter-plates, and reverse transcription-polymerase chain reaction, western blotting, and immunohistochemical examinations were then performed to assess tight junction (TJ)-related protein expression and cellular distribution. Next, the barrier function of the cells was measured via transepithelial electrical resistance (TEER) and paracellular molecular flux. The cells were then stimulated with poly(I:C) and the TEER and TJ-related protein expressions were analyzed. Similar to that in in vivo epithelium, the expression of claudin (CLDN) subtypes CLDN-1, -4, and -7 was observed in the HCLE and HCjE cells, and the barrier function in the HCLE cells was tighter than that in the HCjE cells. Post stimulation with poly(I:C), TEER of the HCLE and HCjE cells increased in a dose- and time-dependent manner, the production of TJ-related protein mRNA and CLDN-4 protein were elevated, and the barrier function of the HCLE and HCjE cells increased, thus possibly indicating that the increased barrier function is a defense mechanism against viral infection.


Assuntos
Epitélio Corneano , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , RNA de Cadeia Dupla/metabolismo , Transcrição Reversa , Epitélio/metabolismo , Células Epiteliais/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Epitélio Corneano/metabolismo
13.
Int Arch Allergy Immunol ; 184(7): 707-719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36822170

RESUMO

INTRODUCTION: Respiratory viral infection in childhood is closely associated with asthmatic attacks. Of all predisposing factors, viral infection is the primary contributor to acute childhood asthma exacerbations. However, the mechanisms involved in viral asthma are unclear. This study attempted to provide insights into molecular mechanisms in respiratory virus-induced acute asthma exacerbations. METHODS: House dust mite (HDM) was given by intranasal administration to induce asthma in mice. Poly(I:C) was used to mimic the viral infection. A selective YAP inhibitor, verteporfin (VP), was used to investigate the role of the YAP/FOXM1 pathway. The expression of YAP, FOXM1, cytokines, and inflammatory cells in lung tissue, and bronchoalveolar lavage fluid (BALF) was determined using RT-PCR, immunohistochemical, ELISA, and flow cytometry studies. The methacholine challenge assesses airway hyperresponsiveness. In 16HBE cell experiments, we selectively inhibited YAP and FOXM1 by VP and RCM1, respectively, and detected the expression of YAP and FOXM1. RESULTS: The experimental studies have confirmed the YAP/FOXM1 pathway plays a vital role in the differentiation and proliferation of airway club cells into goblet cells and lung inflammation. Poly(I:C) upregulated the expression of FOXM1 by activating transcription factor YAP in mice airway epithelial cells and then promoted the expression of downstream transcription factors SPDEF/MUC5AC, resulting in airway mucus hypersecretion and hyperresponsiveness. In addition, Poly(I:C) facilitates the expression of inflammatory factors in lung tissue. All of these events induce asthma exacerbations. The in vitro studies have confirmed that YAP positively regulates FOXM1 in airway epithelial cells. CONCLUSION: Poly(I:C) promotes airway epithelial goblet cell hyperplasia, mucus hypersecretion, and airway hyperresponsiveness. It also upregulates the expression of inflammatory factors in lung tissue and BALF in asthmatic mice by the YAP/FOXM1 pathway, resulting in asthma attacks.


Assuntos
Asma , Pneumonia , Animais , Camundongos , Células Caliciformes/patologia , Camundongos Endogâmicos BALB C , Hiperplasia/patologia , Pulmão/patologia , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Fatores de Transcrição , Pyroglyphidae , Modelos Animais de Doenças , Inflamação/patologia
14.
Clin Sci (Lond) ; 137(10): 785-805, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36951146

RESUMO

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a life-threatening condition caused due to significant pulmonary and systemic inflammation. Chlorogenic acid (CGA) has been shown to possess potent antioxidant, anti-inflammatory, and immunoprotective properties. However, the protective effect of CGA on viral and bacterial-induced ALI/ARDS is not yet explored. Hence, the current study is aimed to evaluate the preclinical efficacy of CGA in lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (POLY I:C)-induced ALI/ARDS models in vitro and in vivo. Human airway epithelial (BEAS-2B) cells exposed to LPS+POLY I:C significantly elevated oxidative stress and inflammatory signaling. Co-treatment with CGA (10 and 50 µM) prevented inflammation and oxidative stress mediated by TLR4/TLR3 and NLRP3 inflammasome axis. BALB/c mice, when chronically challenged with LPS+POLY I:C showed a significant influx of immune cells, up-regulation of pro-inflammatory cytokines, namely: IL-6, IL-1ß, and TNF-α, and treatment with intranasal CGA (1 and 5 mg/kg) normalized the elevated levels of immune cell infiltration as well as pro-inflammatory cytokines. D-Dimer, the serum marker for intravascular coagulation, was significantly increased in LPS+ POLY I:C challenged animals which was reduced with CGA treatment. Further, CGA treatment also has a beneficial effect on the lung and heart, as shown by improving lung physiological and cardiac functional parameters accompanied by the elevated antioxidant response and simultaneous reduction in tissue damage caused by LPS+POLY I:C co-infection. In summary, these comprehensive, in vitro and in vivo studies suggest that CGA may be a viable therapeutic option for bacterial and viral-induced ALI-ARDS-like pathology.


Assuntos
NF-kappa B , Síndrome do Desconforto Respiratório , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Poli I/farmacologia
15.
FASEB J ; 36(5): e22317, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438806

RESUMO

Polyinosinic-polycytidylic acid (poly(I:C)) is the agonist of Toll-like receptor 3 (TLR3), which participates in innate immune responses under the condition of myocardial ischemia/reperfusion injury (MIRI). It has been shown that poly(I:C) exhibited cardioprotective activities through the PI3K/Akt pathway, which is the main signal transduction pathway during autophagy. However, the precise mechanism by whether poly(I:C) regulates autophagy remains poorly understood. Thus, this study was designed to investigate the therapeutic effect of poly(I:C) against MIRI and the underlying pathway connection with autophagy. We demonstrated that 1.25 and 5 mg/kg poly(I:C) preconditioning significantly reduced myocardial infarct size and cardiac dysfunction. Moreover, poly(I:C) significantly promoted cell survival by restoring autophagy flux and then regulating it to an adequate level Increased autophagy protein Beclin1 and LC3II together with p62 degradation after additional chloroquine. In addition, mRFP-GFP-LC3 adenoviruses exhibited autophagy activity in neonatal rat cardiac myocytes (NRCMs). Mechanistically, poly(I:C) activated the PI3K/AKT/mTOR pathway to induce autophagy, which was abolished by LY294002 (PI3K antagonist), rapamycin (autophagy activator and mTOR inhibitor), or 3-methyladenine (autophagy inhibitor), suggesting either inhibition of the PI3K/Akt/mTOR pathway or autophagy activity interrupt the beneficial effect of poly(I:C) preconditioning. In conclusion, poly(I:C) promotes cardiomyocyte survival from ischemia/reperfusion injury by regulating autophagy via the PI3K/Akt/mTOR pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Apoptose , Autofagia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
16.
Fish Shellfish Immunol ; 133: 108534, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36649809

RESUMO

Largemouth bass (Micropterus salmoides) is a worldwide commercially important aquatic species. In recent years, pathogenic diseases cause great economic losses and hinder the industry of largemouth bass. To further understand the immune response against pathogens in largemouth bass, splenic transcriptome libraries of largemouth bass were respectively constructed at 12 h post-challenged with phosphate-buffered saline (PBS), lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (polyI:C) by using RNA sequencing technology (RNA-seq). RNA libraries were constructed using 9 RNA splenic samples isolated from three biological replicates of the three groups and sequenced on the DNBSEQ platform. A total number of 86,306 unigenes were obtained. Through pairwise comparisons among the three groups, we identified 11,295 different expression genes (DEGs) exhibiting significant differences at the transcript level. There were 7, 7, and 13 signal pathways were significantly enriched in LPS-PBS comparison, polyI:C-PBS comparison, and LPS-polyI:C comparison, respectively, indicating that the immune response to different pathogens was distinct in largemouth bass. To the best of our knowledge, this is the first report on the immune response of largemouth bass against different pathogen-associated molecular patterns (PAMPs) stimuli using transcriptomic analysis. Our results provide a valuable resource and new insights to understanding the immune characteristics of largemouth bass against different pathogens.


Assuntos
Bass , Animais , Bass/genética , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Sequência de Bases
17.
Contact Dermatitis ; 89(4): 230-240, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37463838

RESUMO

INTRODUCTION: Poly(I:C) is recognised by endosomal Toll-like receptor 3 (TLR3) and activates cytotoxic CD8(+) lymphocytes and natural killer (NK) cells. It has been shown that the viral TLR3 agonist induces robust and long-lasting T-cell-mediated responses. In addition, TLR3 modulates the contact hypersensitivity reaction. OBJECTIVE: This study aimed to determine whether poly(I:C) injection can induce NK-mediated hapten reactivity in mice. METHODS: Mice were treated with poly(I:C), and their response to dinitrofluorobenzene hapten was measured by assessing ear swelling and serum interferon gamma (IFN-γ) production. Adoptive cell transfer and cell sorting were used to investigate the mechanism of the reaction, and the phenotype of poly(I:C)-activated liver NK cells was determined by flow cytometry analysis. RESULTS: The results showed that poly(I:C) administration increased ear swelling, serum IFN-γ levels and the response to hapten in both immunocompetent and T- and B-cell-deficient mice. Only liver poly(I:C)-activated DX5(+) NK cells were able to transfer reactivity to hapten into a naive recipient. Induction of liver NK cells after poly(I:C) administration was TLR3/TRIF- and IFN-γ-dependent, interleukin 12-independent, and not modulated by MyD88. CONCLUSION: This study provides new insights into how poly(I:C) stimulates NK-mediated reactivity to hapten and suggests that liver NK cells may modulate the immune response to non-pathogenic factors during viral infection.


Assuntos
Dermatite Alérgica de Contato , Receptor 3 Toll-Like , Camundongos , Animais , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , Ligantes , Dermatite Alérgica de Contato/etiologia , Células Matadoras Naturais , Poli I-C/efeitos adversos , Interferon gama , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203337

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation, aberrant differentiation of keratinocytes, and dysregulated immune responses. WW domain-containing oxidoreductase (WWOX) is a non-classical tumor suppressor gene that regulates multiple cellular processes, including proliferation, apoptosis, and migration. This study aimed to explore the possible role of WWOX in the pathogenesis of psoriasis. Immunohistochemical analysis showed that the expression of WWOX was increased in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model. Immortalized human epidermal keratinocytes were transduced with a recombinant adenovirus expressing microRNA specific for WWOX to downregulate its expression. Inflammatory responses were detected using Western blotting, real-time quantitative reverse transcription polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay. In human epidermal keratinocytes, WWOX knockdown reduced nuclear factor-kappa B signaling and levels of proinflammatory cytokines induced by polyinosinic: polycytidylic acid [(poly(I:C)] in vitro. Furthermore, calcium chelator and protein kinase C (PKC) inhibitors significantly reduced poly(I:C)-induced inflammatory reactions. WWOX plays a role in the inflammatory reaction of epidermal keratinocytes by regulating calcium and PKC signaling. Targeting WWOX could be a novel therapeutic approach for psoriasis in the future.


Assuntos
Dermatite , Psoríase , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inflamação , NF-kappa B , Psoríase/induzido quimicamente , Psoríase/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética
19.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958756

RESUMO

Previously, we isolated potentially probiotic Ligilactobacillus salivarius strains from the intestines of wakame-fed pigs. The strains were characterized based on their ability to modulate the innate immune responses triggered by the activation of Toll-like receptor (TLR)-3 or TLR4 signaling pathways in intestinal mucosa. In this work, we aimed to evaluate whether nasally administered L. salivarius strains are capable of modulating the innate immune response in the respiratory tract and conferring long-term protection against the respiratory pathogen Streptococcus pneumoniae. Infant mice (3-weeks-old) were nasally primed with L. salivarius strains and then stimulated with the TLR3 agonist poly(I:C). Five or thirty days after the last poly(I:C) administration mice were infected with pneumococci. Among the strains evaluated, L. salivarius FFIG58 had a remarkable ability to enhance the protection against the secondary pneumococcal infection by modulating the respiratory immune response. L. salivarius FFIG58 improved the ability of alveolar macrophages to produce interleukin (IL)-6, interferon (IFN)-γ, IFN-ß, tumor necrosis factor (TNF)-α, IL-27, chemokine C-C motif ligand 2 (CCL2), chemokine C-X-C motif ligand 2 (CXCL2), and CXCL10 in response to pneumococcal challenge. Furthermore, results showed that the nasal priming of infant mice with the FFIG58 strain protected the animals against secondary infection until 30 days after stimulation with poly(I:C), raising the possibility of using nasally administered immunobiotics to stimulate trained immunity in the respiratory tract.


Assuntos
Ligilactobacillus salivarius , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Suínos , Ligantes , Imunidade Inata , Fator de Necrose Tumoral alfa , Quimiocinas
20.
J Aquat Anim Health ; 35(3): 169-186, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37139802

RESUMO

OBJECTIVE: We identified two tripartite motif (TRIM) genes, LcTRIM21 and LcTRIM39, from the Asian Seabass Lates calcarifer, and examined their responses to experimental betanodavirus infection and stimulation with microbial pathogen-associated molecular patterns. METHODS: Genes encoding LcTRIM21 and LcTRIM39 were identified, cloned, and sequenced from the Asian Seabass. We analyzed the sequence using a variety of bioinformatics tools to determine protein structure, localization, and establish a phylogenetic tree. By using quantitative real-time PCR, we analyzed expression profiles of the LcTRIM21 and LcTRIM39 genes in response to betanodavirus challenge as well as molecular pathogen-associated molecular patterns like poly(I:C) and Zymosan A. The tissue distribution pattern of these genes was also examined in healthy animals. RESULT: Asian Seabass homologues of the TRIM gene, LcTRIM21 and LcTRIM39, were cloned, both encoding proteins with 547 amino acids. LcTRIM21 is predicted to have an isoelectric point of 6.32 and a molecular mass of 62.11 kilodaltons, while LcTRIM39 has an isoelectric point of 5.57 and a molecular mass of 62.11 kilodaltons. LcTRIM21 and LcTRIM39 homologues were predicted to be localized in cytoplasm by in silico protein localization. Structurally, both proteins contain an N-terminal really interesting new gene (RING) zinc-finger domain, B-box domain, coiled-coil domain and C-terminal PRY/SPRY domain. Most tissues and organs examined showed constitutive expression of LcTRIM21 and LcTRIM39. Upon poly(I:C) challenge or red-spotted grouper nervous necrosis virus infection, LcTRIM21 and LcTRIM39 mRNA expression was significantly upregulated, suggesting that they may play a critical antiviral role against fish viruses. LcTRIM21 and LcTRIM39 expression were also upregulated by administration of the glucan Zymosan A. CONCLUSION: The TRIM-containing gene is an E3 ubiquitin ligase that exhibits antiviral activity by targeting viral proteins via proteasome-mediated ubiquitination. TRIM proteins can be explored for the discovery of antivirals and strategies to combat diseases like viral nervous necrosis, that threaten seabass aquaculture.


Assuntos
Bass , Doenças dos Peixes , Perciformes , Viroses , Animais , Filogenia , Moléculas com Motivos Associados a Patógenos , Zimosan , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Bass/genética , Viroses/veterinária , Poli I-C/farmacologia , Necrose/veterinária , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA