Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(3): e2300510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849407

RESUMO

Polyimide (PI) film with hydrophilic greatly limits their application in the field of microelectronic device packaging. A novel hydrophobic PI film with sag structure and improved mechanical properties is prepared relying on the reaction between anhydride-terminated isocyanate-based polyimide (PIY) containing a seven-membered ring structure and the amino-terminated polyamide acid (PAA) via multi-hybrid strategy, this work named it as hybrid PI film and marked it as PI-PIY-X. PI-PIY-30 showed excellent hydrophobic properties, and the water contact angle could reach to 102°, which is 20% and 55% higher than simply PI film and PIY film, respectively. The water absorption is only 1.02%, with a decrease of 49% and 53% compared with PI and PIY. Due to that the degradation of seven-membered ring and generation of carbon dioxide led to the formation of sag structure, the size of sag structures is ≈16.84 and 534.55 nm for in-plane and out-plane direction, which are observed on surface of PI-PIY-30. Meanwhile, PI-PIY-30 possessed improved mechanical properties, and the tensile strength is 109.08 MPa, with 5% and more than 56% higher than that of pure PI and PIY film, showing greatly application prospects in the field of integrated circuit.


Assuntos
Aminoácidos , Anidridos , Dióxido de Carbono , Isocianatos , Água
2.
Macromol Rapid Commun ; 44(13): e2300060, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014631

RESUMO

Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high-λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.


Assuntos
Eletrônica , Cristais Líquidos , Condutividade Elétrica , Temperatura Alta , Condutividade Térmica
3.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903276

RESUMO

Two novel electrochromic aromatic polyimides (named as TPA-BIA-PI and TPA-BIB-PI, respectively) with pendent benzimidazole group were synthesized from 1,2-Diphenyl-N,N'-di-4-aminophenyl-5-amino-benzimidazole and 4-Amino-4'-aminophenyl-4″-1-phenyl-benzimidazolyl-phenyl-aniline with 4,4'-(hexafluoroisopropane) phthalic anhydride (6FDA) via two-step polymerization process, respectively. Then, polyimide films were prepared on ITO-conductive glass by electrostatic spraying, and their electrochromic properties were studied. The results showed that due to the π-π* transitions, the maximum UV-Vis absorption bands of TPA-BIA-PI and TPA-BIB-PI films were located at about 314 nm and 346 nm, respectively. A pair of reversible redox peaks of TPA-BIA-PI and TPA-BIB-PI films that were associated with noticeable color changed from original yellow to dark blue and green were observed in the cyclic voltammetry (CV) test. With increasing voltage, new absorption peaks of TPA-BIA-PI and TPA-BIB-PI films emerged at 755 nm and 762 nm, respectively. The switching/bleaching times of TPA-BIA-PI and TPA-BIB-PI films were 13 s/16 s and 13.9 s/9.5 s, respectively, showing that these polyimides can be used as novel electrochromic materials.

4.
Polymers (Basel) ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39204535

RESUMO

Polyimide (PI) films are well recognized for their outstanding chemical resistance, radiation resistance, thermal properties, and mechanical strength, rendering them highly valuable in advanced fields such as aerospace, sophisticated electronic components, and semiconductors. However, improving their optical transparency while maintaining excellent thermal properties remains a significant challenge. This review systematically checks over recent advancements in enhancing the optical and thermal performance of PI films, focusing on various strategies through molecular design. These strategies include optimizing the main chain, side chain, non-coplanar structures, and endcap groups. Rigid and flexible structural characteristics in the proper combination can contribute to the balance thermal stability and optical transparency. Introducing fluorinated substituents and bulky side groups significantly reduces the formation of charge transfer complexes, enhancing both transparency and thermal properties. Non-coplanar structures, such as spiro and cardo configurations, further improve the optical properties while maintaining thermal stability. Future research trends include nanoparticle doping, intrinsic microporous PI polymers, photosensitive polyimides, machine learning-assisted molecular design, and metal coating techniques, which are expected to further enhance the comprehensive optical and thermal performance of PI films and expand their applications in flexible displays, solar cells, and high-performance electronic devices. Overall, systematic molecular design and optimization have significantly improved the optical and thermal performance of PI films, showing broad application prospects. This review aims to provide researchers with valuable references, stimulate more innovative research and applications, and promote the deep integration of PI films into modern technology and industry.

5.
Adv Mater ; : e2304175, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37382198

RESUMO

Polyimides (PIs) used in advanced electrical and electronic devices can be electrically/mechanically damaged, resulting in a significant waste of resources. Closed-loop chemical recycling may prolong the service life of synthetic polymers. However, the design of dynamic covalent bonds for preparing chemically recyclable crosslinked PIs remains a challenging task. Herein, new crosslinked PI films containing a PI oligomer, chain extender, and crosslinker are reported. They exhibit superior recyclability and excellent self-healable ability owing to the synergistic effect of the chain extender and crosslinker. The produced films can be completely depolymerized in an acidic solution at ambient temperature, leading to efficient monomer recovery. The recovered monomers may be used to remanufacture crosslinked PIs without deteriorating their original performance. In particular, the designed films can serve as corona-resistant films with a recovery rate of approximately 100%. Furthermore, carbon fiber reinforced composites (CFRCs) with PI matrices are suitable for harsh environments and can be recycled multiple times at a non-destructive recycling rate up to 100%. The preparation of high-strength dynamic covalent adaptable PI hybrid films from simple PI oligomers, chain extenders, and crosslinkers may provide a solid basis for sustainable development in the electrical and electronic fields.

6.
Adv Mater ; 34(2): e2105299, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34802169

RESUMO

Owing to their outstanding comprehensive performance, polyimide (PI) composite films are widely used on the external surfaces of spacecraft to protect them from the adverse conditions of low Earth orbit (LEO). However, current PI composite films have inadequate mechanical properties and atomic oxygen (AO) resistance. Herein, this work fabricates a new PI-based nanocomposite film with greatly enhanced mechanical properties and AO resistance by integrating mica nanosheets with PI into a unique double-layer nacre-inspired structure with a much higher density of mica nanosheets in the top layer. In addition, the unique microstructure and the intrinsic properties of mica also impart the nanocomposite film with favorable ultraviolet and high-temperature resistance. The comprehensive performance of this material is superior to those of pure PI, single-layer PI-mica, and previously reported PI-based composite films. Thus, the double-layer nanocomposite film displays great potential as an aerospace material for use in LEO.

7.
Polymers (Basel) ; 13(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34578077

RESUMO

To prepare PIs (polyimides) with desirable thermal and mechanical properties is highly demanded due to their widespread applications in flexible optoelectronic devices and printed circuit boards. Here, the PI films of BPDA/4,4'-ODA, BPDA/3,4'-ODA, PMDA/4,4'-ODA, PMDA/3,4'-ODA systems were prepared, and it was found that the PIs with 3,4'-ODA always exhibit a high modulus compared with the PIs with 4,4'-ODA. To disclose the mechanism of high-modulus PI films with 3,4'-ODA, amorphous PI models and uniaxial drawing PI models were established and calculated based on MD simulation. The PI structural deformations at different length scales, i.e., molecular chain cluster scale and repeat unit scale, under the same stress were detailed and analyzed, including the variation of chain conformation, bond length, bond angle, internal rotation energy, and torsion angle. The results indicate that PIs with 3,4-ODA have higher internal rotation energy and smaller deformation with the same stress, consistent with the high modulus.

8.
Polymers (Basel) ; 13(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204615

RESUMO

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.

9.
Materials (Basel) ; 12(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569679

RESUMO

Polyimides (PIs) represent a benchmark for high-performance polymers on the basis of a remarkable collection of valuable traits and accessible production pathways and therefore have incited serious attention from the ever-demanding medical field. Their characteristics make them suitable for service in hostile environments and purification or sterilization by robust methods, as requested by most biomedical applications. Even if PIs are generally regarded as "biocompatible", proper analysis and understanding of their biocompatibility and safe use in biological systems deeply needed. This mini-review is designed to encompass some of the most robust available research on the biocompatibility of various commercial or noncommercial PIs and to comprehend their potential in the biomedical area. Therefore, it considers (i) the newest concepts in the field, (ii) the chemical, (iii) physical, or (iv) manufacturing elements of PIs that could affect the subsequent biocompatibility, and, last but not least, (v) in vitro and in vivo biocompatibility assessment and (vi) reachable clinical trials involving defined polyimide structures. The main conclusion is that various PIs have the capacity to accommodate in vivo conditions in which they are able to function for a long time and can be judiciously certified as biocompatible.

10.
Nanomaterials (Basel) ; 6(10)2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28335316

RESUMO

This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA