Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 200(1): 60-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971534

RESUMO

PURPOSE: The objective of this work is to estimate the patient positioning accuracy of a surface-guided radiation therapy (SGRT) system using an optical surface scanner compared to an X­ray-based imaging system (IGRT) with respect to their impact on intracranial stereotactic radiotherapy (SRT) and intracranial stereotactic radiosurgery (SRS). METHODS: Patient positioning data, both acquired with SGRT and IGRT systems at the same linacs, serve as a basis for determination of positioning accuracy. A total of 35 patients with two different open face masks (578 datasets) were positioned using X­ray stereoscopic imaging and the patient position inside the open face mask was recorded using SGRT. The measurement accuracy of the SGRT system (in a "standard" and an SRS mode with higher resolution) was evaluated using both IGRT and SGRT patient positioning datasets taking into account the measurement errors of the X­ray system. Based on these clinically measured datasets, the positioning accuracy was estimated using Monte Carlo (MC) simulations. The relevant evaluation criterion, as standard of practice in cranial SRT, was the 95th percentile. RESULTS: The interfractional measurement displacement vector of the SGRT system, σSGRT, in high resolution mode was estimated at 2.5 mm (68th percentile) and 5 mm (95th percentile). If the standard resolution was used, σSGRT increased by about 20%. The standard deviation of the axis-related σSGRT of the SGRT system ranged between 1.5 and 1.8 mm interfractionally and 0.5 and 1.0 mm intrafractionally. The magnitude of σSGRT is mainly due to the principle of patient surface scanning and not due to technical limitations or vendor-specific issues in software or hardware. Based on the resulting σSGRT, MC simulations served as a measure for the positioning accuracy for non-coplanar couch rotations. If an SGRT system is used as the only patient positioning device in non-coplanar fields, interfractional positioning errors of up to 6 mm and intrafractional errors of up to 5 mm cannot be ruled out. In contrast, MC simulations resulted in a positioning error of 1.6 mm (95th percentile) using the IGRT system. The cause of positioning errors in the SGRT system is mainly a change in the facial surface relative to a defined point in the brain. CONCLUSION: In order to achieve the necessary geometric accuracy in cranial stereotactic radiotherapy, use of an X­ray-based IGRT system, especially when treating with non-coplanar couch angles, is highly recommended.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Posicionamento do Paciente/métodos , Raios X , Radiografia , Radioterapia Guiada por Imagem/métodos , Imageamento Tridimensional/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle
2.
J Appl Clin Med Phys ; : e14325, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467039

RESUMO

PURPOSE: The picket fence (PF) test is highly recommended for multi-leaf collimator (MLC) quality assurance. However, since the electronic portal imaging device (EPID) on the Elekta Unity only covers a small area, it is not feasible to perform the PF test for the entire MLC. Here, we propose a technique for the PF test by stitching two double-exposed films. METHODS: Two EBT3 films were used to encompass the entire MLC, with each one covering one half of the area. Two fields were employed to apply double exposure: a PF pattern consisting of 11 2 mm wide pickets and a 2.84 cm x 22 cm open field. The edges of the open field defined by the diaphragms were used to correct film rotation as well as align them horizontally. The PF pattern was also measured with the EPID where the pickets were used to align the films vertically. Individual leaf positions were detected on the merged film for quantitative analysis. Various MLC positioning errors were introduced to evaluate the technique's sensitivity. RESULTS: The merged films covered 72 leaf pairs properly (four leaf pairs on both sides were outside the treatment couch). With the EPID, the leaf positioning accuracy was -0.02 ± 0.07 mm (maximum: 0.29 mm) and the picket width variation was 0.00 ± 0.03 mm (maximum: 0.11 mm); with the films, the position accuracy and width variation were -0.03 ± 0.13 mm (maximum: 0.80 mm) and 0.00 ± 0.13 mm (maximum: 0.74 mm), respectively. The EPID was able to detect errors of 0.5 mm or above with submillimeter accuracy; the films were only able to detect errors > 1.0 mm. CONCLUSION: We developed a quantitative technique for the PF test on the Elekta Unity. The merged films covered nearly the entire MLC leaf banks. The technique exhibited clinically acceptable accuracy and sensitivity to MLC positioning errors.

3.
J Appl Clin Med Phys ; 24(3): e13844, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420973

RESUMO

PURPOSE: This study performed an automatic measurement of the off-axis beam-positioning accuracy at a single isocenter via the TrueBeam Developer mode and evaluated the beam-positioning accuracy considering the effect of couch rotational errors. METHODS: TrueBeam STx and the Winston-Lutz test-dedicated phantom, with a 3 mm diameter steel ball, were used in this study. The phantom was placed on the treatment couch, and the Winston-Lutz test was performed at the isocenter for four gantry angles (0°, 90°, 180°, and 270°) using an electronic portal imaging device. The phantom offset positions were at distances of 0, 25, 50, 75, and 100 mm from the isocenter along the superior-inferior, anterior-posterior, and left-right directions. Seventeen patterns of multileaf collimator-shaped square fields of 10 × 10 mm2 were created at the isocenter and off-axis positions for each gantry angle. The beam-positioning accuracy was evaluated with couch rotation along the yaw-axis (0°, ± 0.5°, and ± 1.0°). RESULTS: The mean beam-positioning errors at the isocenter and off-isocenter distances (from the isocenter to ±100 mm) were 0.46-0.60, 0.44-0.91, and 0.42-1.11 mm for the couch angles of 0°, ±0.5°, and ±1°, respectively. The beam-positioning errors increased as the distance from the isocenter and couch rotation increased. CONCLUSION: These findings suggest that the beam-positioning accuracy at the isocenter and off-isocenter positions can be evaluated quickly and automatically using the TrueBeam Developer mode. The proposed procedure is expected to contribute to an efficient evaluation of the beam-positioning accuracy at off-isocenter positions.

4.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299773

RESUMO

There is an increasing need for an independent terrestrial navigation system, owing to the increasing reliance on global navigation satellite systems (GNSS). The medium-frequency range (MF R-Mode) system is considered a promising alternative; however, the skywave effect caused by ionospheric changes at night can degrade its positioning accuracy. To address this problem, we developed an algorithm to detect and mitigate the skywave effect on MF R-Mode signals. The proposed algorithm was tested using data collected from Continuously Operating Reference Stations (CORS) monitoring the MF R-Mode signals. The skywave detection algorithm is based on the signal-to-noise ratio (SNR) induced by the groundwave and skywave composition, whereas the skywave mitigation algorithm was derived from the I and Q components of the signals obtained through IQ modulation. The results demonstrate a significant improvement in the precision and standard deviation of the range estimation using CW1 and CW2 signals. The standard deviations decreased from 39.01 and 39.28 m to 7.94 and 9.12 m, respectively, while the precision (2-sigma) increased from 92.12 and 79.82 m to 15.62 and 17.84 m, respectively. These findings confirm that the proposed algorithms can enhance the accuracy and reliability of MF R-Mode systems.


Assuntos
Algoritmos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
5.
Sensors (Basel) ; 23(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37836887

RESUMO

When patients perform musculoskeletal rehabilitation exercises, it is of great importance to observe the correctness of their performance. The aim of this study is to increase the accuracy of recognizing human movements during exercise. The process of monitoring and evaluating musculoskeletal rehabilitation exercises was modeled using various tracking systems, and the necessary algorithms for processing information for each of the tracking systems were formalized. An approach to classifying exercises using machine learning methods is presented. Experimental studies were conducted to identify the most accurate tracking systems (virtual reality trackers, motion capture, and computer vision). A comparison of machine learning models is carried out to solve the problem of classifying musculoskeletal rehabilitation exercises, and 96% accuracy is obtained when using multilayer dense neural networks. With the use of computer vision technologies and the processing of a full set of body points, the accuracy of classification achieved is 100%. The hypotheses on the ranking of tracking systems based on the accuracy of positioning of human target points, the presence of restrictions on application in the field of musculoskeletal rehabilitation, and the potential to classify exercises are fully confirmed.


Assuntos
Exercício Físico , Movimento , Humanos , Terapia por Exercício/métodos , Redes Neurais de Computação , Algoritmos
6.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960534

RESUMO

Global navigation satellite systems (GNSSs) became an integral part of all aspects of our lives, whether for positioning, navigation, or timing services. These systems are central to a range of applications including road, aviation, maritime, and location-based services, agriculture, and surveying. The Global Positioning System (GPS) Standard Position Service (SPS) provides position accuracy up to 10 m. However, some modern-day applications, such as precision agriculture (PA), smart farms, and Agriculture 4.0, have demanded navigation technologies able to provide more accurate positioning at a low cost, especially for vehicle guidance and variable rate technology purposes. The Society of Automotive Engineers (SAE), for instance, through its standard J2945 defines a maximum of 1.5 m of horizontal positioning error at 68% probability (1σ), aiming at terrestrial vehicle-to-vehicle (V2V) applications. GPS position accuracy may be improved by addressing the common-mode errors contained in its observables, and relative GNSS (RGNSS) is a well-known technique for overcoming this issue. This paper builds upon previous research conducted by the authors and investigates the sensitivity of the position estimation accuracy of low-cost receiver-equipped agricultural rovers as a function of two degradation factors that RGNSS is susceptible to: communication failures and baseline distances between GPS receivers. The extended Kalman filter (EKF) approach is used for position estimation, based on which we show that it is possible to achieve 1.5 m horizontal accuracy at 68% probability (1σ) for communication failures up to 3000 s and baseline separation of around 1500 km. Experimental data from the Brazilian Network for Continuous Monitoring of GNSS (RBMC) and a moving agricultural rover equipped with a low-cost GPS receiver are used to validate the analysis.

7.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896514

RESUMO

Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg-Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data.

8.
Arch Orthop Trauma Surg ; 143(11): 6857-6863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37270739

RESUMO

BACKGROUND: Accuracy of acetabular cup positioning during total hip arthroplasty (THA) can be improved with intra-operative imaging but may be influenced by body mass index (BMI). This study assessed the influence of BMI (kg/m2) on cup accuracy when using intra-operative fluoroscopy (IF) alone or supplemented with a commercial product. METHODS: This retrospective review included four consecutive cohorts of patients having undergone anterior approach THA with IF alone (2011-2015), IF and Overlay (2015-2016) (Radlink Inc., Los Angeles, CA), IF and Grid (2017-2018) (HipGrid Drone™, OrthoGrid Systems Inc., Salt Lake City, UT) and IF and Digital (2018-2020) (OrthoGrid Phantom®, OrthoGrid Systems, Inc., Salt Lake City, UT). Component placement accuracy was measured on 6-week post-operative weight bearing radiographs and compared between four BMI patient groups (BMI ≤ 25, 25 < BMI ≤ 30, 30 < BMI ≤ 35, and 35 < BMI). Total fluoroscopy times were also recorded directly from the fluoroscopy unit. RESULTS: Abduction angle significantly increased as BMI increased (p = 0.003) with IF alone but no difference was present in groups with guidance technology. Anteversion was significantly different between BMI groups for IF alone (p = 0.028) and Grid (p = 0.027) but was not different in Overlay (p = 0.107) or Digital (p = 0.210). Fluoroscopy time was significantly different between BMI categories for IF alone (p = 0.005) and Grid (p = 0.018) but was not different in Overlay (p = 0.444) or Digital (p = 0.170). CONCLUSION: Morbid obesity (BMI > 35) increases risk for malpositioning of acetabular cups and increases surgical time with IF alone or the Grid. Additional IF guidance technology (Overlay or Digital) increased cup positioning accuracy without decreasing surgical efficiency.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Artroplastia de Quadril/métodos , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Radiografia , Estudos Retrospectivos , Obesidade/cirurgia
9.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799512

RESUMO

Global Navigation Satellite Systems (GNSS) have revolutionized land surveying, by determining position coordinates with centimeter-level accuracy in real-time or up to sub-millimeter accuracy in post-processing solutions. Although low-cost single-frequency receivers do not meet the accuracy requirements of many surveying applications, multi-frequency hardware is expected to overcome the major issues. Therefore, this paper is aimed at investigating the performance of a u-blox ZED-F9P receiver, connected to a u-blox ANN-MB-00-00 antenna, during multiple field experiments. Satisfactory signal acquisition was noticed but it resulted as >7 dB Hz weaker than with a geodetic-grade receiver, especially for low-elevation mask signals. In the static mode, the ambiguity fixing rate reaches 80%, and a horizontal accuracy of few centimeters was achieved during an hour-long session. Similar accuracy was achieved with the Precise Point Positioning (PPP) if a session is extended to at least 2.5 h. Real-Time Kinematic (RTK) and Network RTK measurements achieved a horizontal accuracy better than 5 cm and a sub-decimeter vertical accuracy. If a base station constituted by a low-cost receiver is used, the horizontal accuracy degrades by a factor of two and such a setup may lead to an inaccurate height determination under dynamic surveying conditions, e.g., rotating antenna of the mobile receiver.

10.
Sensors (Basel) ; 21(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502623

RESUMO

Ultra-wideband (UWB) sensors have been widely applied to indoor positioning. The indoor positioning of UWB sensors usually refers to the positioning of the mobile node that interacts with the anchors through radio for calculating the distance between the mobile node and each of the surrounding anchors. The positioning accuracy of the mobile node is affected by the installation positions of surrounding anchors. A mathematical model was proposed in this paper to respectively analyze the mobile node's 2-dimensional (2D) and 3-dimensional (3D) positioning errors. The factors influencing the mobile node's positioning errors were explored through the mathematical models. The best installation positions of surrounding anchors were obtained based on the mathematical models. The mobile node's 2D and 3D positioning errors were reduced based on the anchor positions derived from the mathematical model. Both computer simulations and practical experiments were implemented to justify the results obtained in the mathematical models.


Assuntos
Algoritmos , Modelos Teóricos
11.
Sensors (Basel) ; 21(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502674

RESUMO

With the construction and development of the BeiDou navigation satellite system (BDS), the precise point positioning (PPP) performance of the BDS is worthy of research. In this study, observational data from 17 stations around the world across 20 days are used to comprehensively evaluate the PPP performance of BDS B1c/B2a signals. For greater understanding, the results are also compared with the Global Positioning System (GPS) and BDS PPP performance of different signals and system combinations. The evaluation found root mean square (RMS) values of the static PPP in the north (N), east (E), and upward (U) components, based on the B1c/B2a frequency of BDS-3, to be 6.9 mm, 4.7 mm, and 26.6 mm, respectively. Similar to the static positioning, the RMS values of kinematic PPP in the three directions of N, E, and U are 2.6 cm, 6.0 cm, and 8.5 cm, respectively. Besides this, the static PPP of BDS-3 (B1cB2a) and BDS-2 + BDS-3 (B1IB3I) have obvious system bias. Compared with static PPP, kinematic PPP is more sensitive to the number of satellites, and the coordinate accuracy in three dimensions can be increased by 27% with the combination of GPS (L1L2) and BDS. Compared with BDS-2+BDS-3 (B1IB3I), the convergence time of BDS-3 (B1CB2a) performs better in both static and kinematic modes. The antenna model does not show a significant difference in terms of the effect of the convergence speed, though the number of satellites observed has a certain influence on the convergence time.

12.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34450997

RESUMO

Positioning with low-cost GNSS (Global Navigation Satellite System) receivers is becoming increasingly popular in many engineering applications. In particular, dual-frequency receivers, which receive signals of all available satellite systems, offer great possibilities. The main objective of this research was to evaluate the accuracy of a position determination using low-cost receivers in different terrain conditions. The u-blox ZED-F9P receiver was used for testing, with the satellite signal supplied by both a dedicated u-blox ANN-MB-00 low-cost patch antenna and the Leica AS10 high-precision geodetic one. A professional Leica GS18T geodetic receiver was used to acquire reference satellite data. In addition, on the prepared test base, observations were made using the Leica MS50 precise total station, which provided higher accuracy and stability of measurement than satellite positioning. As a result, it was concluded that the ZED-F9P receiver equipped with a patch antenna is only suitable for precision measurements in conditions with high availability of open sky. However, the configuration of this receiver with a geodetic-grade antenna significantly improves the quality of results, beating even professional geodetic equipment. In most cases of the partially obscured horizon, a high precision positioning was obtained, making the ZED-F9P a valuable alternative to the high-end geodetic receivers in many applications.

13.
Sensors (Basel) ; 20(19)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020392

RESUMO

To achieve photogrammetry without ground control points (GCPs), the precise measurement of the exterior orientation elements for the remote sensing camera is particularly important. Currently, the satellites are equipped with a GPS receiver, so that the accuracy of the line elements of the exterior orientation elements could reach centimeter-level. Furthermore, the high-precision angle elements of the exterior orientation elements could be obtained through a star camera which provides the direction reference in the inertial coordinate system and star images. Due to the stress release during the launch and the changes of the thermal environment, the installation matrix is variable and needs to be recalibrated. Hence, we estimate the cosine angle vector invariance of a remote sensing camera and star camera which are independent of attitude, and then we deal with long-term on-orbit data by using batch processing to realize the accurate calibration of the installation matrix. This method not only removes the coupling of attitude and installation matrix, but also reduces the conversion error of multiple coordinate systems. Finally, the geo-positioning accuracy in planimetry is remarkably higher than the conventional method in the simulation results.

14.
Sensors (Basel) ; 20(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764241

RESUMO

The absolute positioning accuracy of a robot is an important specification that determines its performance, but it is affected by several error sources. Typical calibration methods only consider kinematic errors and neglect complex non-kinematic errors, thus limiting the absolute positioning accuracy. To further improve the absolute positioning accuracy, we propose an artificial neural network optimized by the differential evolution algorithm. Specifically, the structure and parameters of the network are iteratively updated by differential evolution to improve both accuracy and efficiency. Then, the absolute positioning deviation caused by kinematic and non-kinematic errors is compensated using the trained network. To verify the performance of the proposed network, the simulations and experiments are conducted using a six-degree-of-freedom robot and a laser tracker. The robot average positioning accuracy improved from 0.8497 mm before calibration to 0.0490 mm. The results demonstrate the substantial improvement in the absolute positioning accuracy achieved by the proposed network on an industrial robot.

15.
Sensors (Basel) ; 20(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013148

RESUMO

Satellite platform microvibration is a common phenomenon in earth observation satellite orbits that directly affects the imaging quality and accuracy of surveying and mapping. With the continuous improvement in the spatial resolution, the influence of satellite platform microvibration on image geometric accuracy is becoming increasingly significant. High-precision microvibration detection and compensation are key technologies for eliminating image distortion and location deviation caused by satellite platform microvibration. In this paper, the microvibration detection methods of different satellite platforms are summarized, and the verification and analysis are performed on the data downloaded from the Resource-3 satellite (ZY-3) platform, to provide technical support for subsequent refined processing of satellite attitude.

16.
Sensors (Basel) ; 20(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992773

RESUMO

In the near future, the fifth-generation wireless technology is expected to be rolled out, offering low latency, high bandwidth and multiple antennas deployed in a single access point. This ecosystem will help further enhance various location-based scenarios such as assets tracking in smart factories, precise smart management of hydroponic indoor vertical farms and indoor way-finding in smart hospitals. Such a system will also integrate existing technologies like the Internet of Things (IoT), WiFi and other network infrastructures. In this respect, 5G precise indoor localization using heterogeneous IoT technologies (Zigbee, Raspberry Pi, Arduino, BLE, etc.) is a challenging research area. In this work, an experimental 5G testbed has been designed integrating C-RAN and IoT networks. This testbed is used to improve both vertical and horizontal localization (3D Localization) in a 5G IoT environment. To achieve this, we propose the DEep Learning-based co-operaTive Architecture (DELTA) machine learning model implemented on a 3D multi-layered fingerprint radiomap. The DELTA begins by estimating the 2D location. Then, the output is recursively used to predict the 3D location of a mobile station. This approach is going to benefit use cases such as 3D indoor navigation in multi-floor smart factories or in large complex buildings. Finally, we have observed that the proposed model has outperformed traditional algorithms such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN).

17.
Sensors (Basel) ; 20(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963915

RESUMO

Usually, the rational polynomial coefficient (RPC) model of spaceborne synthetic aperture radar (SAR) is fitted by the original range Doppler (RD) model. However, the radar signal is affected by two-way atmospheric delay, which causes measurement error in the slant range term of the RD model. In this paper, two atmospheric delay correction methods are proposed for use in terrain-independent RPC fitting: single-scene SAR imaging with a unique atmospheric delay correction parameter (plan 1) and single-scene SAR imaging with spatially varying atmospheric delay correction parameters (plan 2). The feasibility of the two methods was verified by conducting fitting experiments and geometric positioning accuracy verification of the RPC model. The experiments for the GF-3 satellite were performed by using global meteorological data, a global digital elevation model, and ground control data from several regions in China. The experimental results show that it is feasible to use plan 1 or plan 2 to correct the atmospheric delay error, no matter whether in plain, mountainous, or plateau areas. Moreover, the geometric positioning accuracy of the RPC model after correcting the atmospheric delay was improved to better than 3 m. This is of great significance for the efficient and high-precision geometric processing of spaceborne SAR images.

18.
Sensors (Basel) ; 19(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744082

RESUMO

A novel two-dimensional (2D) positioning method based on Raman distributed temperature sensing (RDTS) has been reported to dramatically improve positioning accuracy. Using a well-designed 2D distribution of optical fiber and corresponding algorithms, the heat source can be accurately located without crosstalk; however, there is a tradeoff between sensing distance and positioning accuracy. In our experiments, an RDTS system with a spatial resolution of 0.8 m along a 3 km multimode fiber (MMF) is used with specific 2D routing rules and corresponding algorithms. A positioning accuracy of about 0.1 m is obtained without hardware modification, which could be improved through the dense arrangement of fiber; however, this would sacrifice the sensing length. This solution can be used for both flat surfaces and curved surfaces such as pipes or tank surfaces. This scheme can also be extended to three-dimensional positioning using a delicate routing design of sensing fiber.

19.
Sensors (Basel) ; 19(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597390

RESUMO

With the rapid development of the satellite navigation industry, low-cost and high-precision Global Navigation Satellite System (GNSS) positioning has recently become a research hotspot. The traditional application of GNSS may be further extended thanks to the low cost of measuring instruments, but effective methods are also desperately needed due to the low quality of the data obtained using these instruments. Thus, in this paper, we propose the analysis and evaluation of the ambiguity fixed-rate and positioning accuracy of single-frequency Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) data, collected from a low-cost u-blox receiver, based on the Constrained LAMBDA (CLAMBDA) method with a baseline length constraint, instead of the classical LAMBDA method. Three sets of experiments in different observation environments, including two sets of static short-baseline experiments and a set of dynamic vehicle experiments, are adopted in this paper. The experiment results show that, compared to classical LAMBDA method, the CLAMBDA method can significantly improve the success rate of the GNSS ambiguity resolution. When the ambiguity is fixed correctly, the baseline solution accuracy reaches 0.5 and 1 cm in a static scenario, and 1 and 2 cm on a dynamic platform.

20.
Sensors (Basel) ; 19(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500185

RESUMO

According to the IHO (International Hydrographic Organization) S-44 standard, hydrographic surveys can be carried out in four categories, the so-called orders-special, 1a, 1b, and 2-for which minimum accuracy requirements for the applied positioning system have been set out. These amount to, respectively: 2 m, 5 m, 5 m, and 20 m at a confidence level of 0.95. It is widely assumed that GNSS (Global Navigation Satellite System) network solutions with an accuracy of 2-5 cm (p = 0.95) and maritime DGPS (Differential Global Positioning System) systems with an error of 1-2 m (p = 0.95) are currently the two main positioning methods in hydrography. Other positioning systems whose positioning accuracy increases from year to year (and which may serve as alternative solutions) have been omitted. The article proposes a method that enables an assessment of any given navigation positioning system in terms of its compliance (or non-compliance) with the minimum accuracy requirements specified for hydrographic surveys. The method concerned clearly assesses whether a particular positioning system meets the accuracy requirements set out for a particular IHO order. The model was verified, taking into account both past and present research results (stationary and dynamic) derived from tests on the following systems: DGPS, EGNOS (European Geostationary Navigation Overlay Service), and multi-GNSS receivers (GPS/GLONASS/BDS/Galileo). The study confirmed that the DGPS system meets the requirements for all IHO orders and proved that the EGNOS system can currently be applied in measurements in the orders 1a, 1b, and 2. On the other hand, multi-GNSS receivers meet the requirements for order 2, while some of them meet the requirements for orders 1a and 1b as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA