Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Histochem Cell Biol ; 162(6): 495-510, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39182197

RESUMO

Glycan-binding specificity was studied for Jacalin, RCA 120, SBA, PHA-L, PHA-E, WGA, UEA, AAL, LTL, LEL, SNA, DSA, LCA, MAH and Con A, lectins widely used in histochemistry. Oligosaccharide- and polysaccharide-based glycan arrays were applied. Expected specificity was confirmed for only 6 of the 15 lectins and the glycan binding profiles of some lectins were dramatically broader than generally accepted. WGA, LEL and DSA known as chitooligosaccharide-specific, were unexpectedly polyreactive, binding to other glycans with the same affinity as to chitobiose, ABH antigens and oligolactosamines (unsubstituted and sialylated). SBA, in addition to expected binding to glycans with terminal GalNAcα, also had high affinity for the GM1 ganglioside. MAH demonstrated much higher affinity to a variety of sulfated glycans compared to Neu5Acα2-3Galß1-3GalNAcα. Contrary to the common view, LCA demonstrated the maximum binding to (GlcNAcß1-2Manα1)2-3,6-Manß1-4GlcNAcß1-4GlcNAc N-glycan, while it had no interaction with corresponding Gal or Neu5Ac terminated versions. This observed polyreactivity of some lectins casts doubt on their use in accurately determining the presence of a specific glycan structure by histochemical studies. However, comparisons of sera from healthy and diseased individuals with help of a lectin array can easily establish differences in glycosylation patterns and presumptive glycan identities, which can later be clarified using more accurate methods of structural analysis.


Assuntos
Oligossacarídeos , Polissacarídeos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/análise , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Humanos , Plantas/química , Plantas/metabolismo , Lectinas/química , Lectinas/metabolismo
2.
Xenotransplantation ; 28(3): e12672, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33432698

RESUMO

BACKGROUND: The α1,3-galactosyltransferase gene-knockout (GalT KO) mice are able to produce natural anti-αGal antibodies apparently without any specific immunization. GalT KO mice are commonly used as a model immunological system for studying anti-αGal responses to Gal-positive xenografts in human. In this study, we compared the specificity of mouse and human αGal antibodies to realize the adequacy of the murine model. METHODS: Using hapten-specific affinity chromatography antibodies against Galα1-3Galß1-4GlcNAcß epitope were isolated from both human and GalT KO mice blood sera. Specificity of isolated antibodies was determined using a printed glycan array (PGA) containing 400 mammalian glycans and 200 bacterial polysaccharides. RESULTS: The quantity of isolated specific anti-Galα antibodies corresponds to a content of <0.2% of total Ig, which is an order of magnitude lower than that generally assumed for both human and murine peripheral blood immunoglobulin, with a high predominance of IgM over IgG (95% vs 5%). Analysis using a printed glycan array has demonstrated that (a) antibodies from both species bind not only the Galα1-3Galß1-4GlcNAcß epitope, but also unrelated glycans; (b) particularly, for human (but not mouse) antibodies the best binders appear to be bacterial polysaccharides; (c) the profile of mouse antibodies is broader, it is noteworthy that they recognize a variety of human blood group B epitopes and even glycans without the α-galactosyl residue. CONCLUSIONS: We believe that the mouse model should be used cautiously in xenotransplantation experiments when the fine epitope specificity of antibodies is critical.


Assuntos
Anticorpos , Galactosiltransferases , Animais , Galactosiltransferases/genética , Humanos , Camundongos , Camundongos Knockout , Polissacarídeos , Transplante Heterólogo
3.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899593

RESUMO

The level of human natural antibodies of immunoglobulin M isotype against LeC in patients with breast cancer is lower than in healthy women. The epitope specificity of these antibodies has been characterized using a printed glycan array and enzyme-linked immunosorbent assay (ELISA), the antibodies being isolated from donors' blood using LeC-Sepharose (LeC is Galß1-3GlcNAcß). The isolated antibodies recognize the disaccharide but do not bind to glycans terminated with LeC, which implies the impossibility of binding to regular glycoproteins of non-malignant cells. The avidity (as dissociation constant value) of antibodies probed with a multivalent disaccharide is 10-9 M; the nanomolar level indicates that the concentration is sufficient for physiological binding to the cognate antigen. Testing of several breast cancer cell lines showed the strongest binding to ZR 75-1. Interestingly, only 7% of the cells were positive in a monolayer with a low density, increasing up to 96% at highest density. The enhanced interaction (instead of the expected inhibition) of antibodies with ZR 75-1 cells in the presence of Galß1-3GlcNAcß disaccharide, indicates that the target epitope of anti-LeC antibodies is a molecular pattern with a carbohydrate constituent rather than a glycan.


Assuntos
Dissacarídeos/imunologia , Epitopos/imunologia , Galactanos/imunologia , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Dissacarídeos/química , Dissacarídeos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Galactanos/metabolismo , Humanos , Imunoglobulina M/imunologia , Camundongos , Camundongos Knockout , Polissacarídeos/química , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Ligação Proteica
4.
Biochimie ; 202: 94-102, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988841

RESUMO

Viscumin, a lectin used in anti-cancer therapy, was originally considered as ßGal recognizing protein; later, an ability to bind 6'-sialyl N-acetyllactosamine (6'SLN) terminated gangliosides was found. Here we probed viscumin with a printed glycan array (PGA) containing a large number of mammalian sulfated glycans, and found a strong binding to glycans with 6-O-SuGal moiety as lactose, N-acetyllactosamine (LN), di-N-acetyllactosamine (LacdiNAc), and even 6-O-SuGalNAcα (but not SiaTn). Also, the ability to bind some of αGal terminated glycans, including Galα1-3Galß1-4GlcNAc, was observed. Unexpectedly, only weak interaction was detected with parent neutral ß-galactosides including LN-LN-LN and branched (LN)2LN oligolactosamines; in the light of these data, one should not confidently classify viscumin as a ß-galactoside-binding lectin. Carrying out PGA in the presence of neutral or sulfated/sialylated glycan, together with sequential elution from lactose-sepharose and consideration of the protein structure, lead to the conclusion that two glycan-binding sites of viscumin have different specificities, one of which prefers charged sulfated and sialylated moieties.


Assuntos
Lactose , Animais , Mamíferos , Polissacarídeos , Proteínas Inativadoras de Ribossomos Tipo 2 , Sulfatos
5.
Mol Immunol ; 106: 63-68, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30583222

RESUMO

Sepharose matrix without immobilized ligands binds antibodies from human blood serum or immunoglobulin preparations. The eluted antibodies bind bacterial polysaccharides having no structural similarity to agarose (Sepharose is a cross-linked polysaccharide agarose) with a high affinity. It is concluded that the identified antibodies are capable of recognizing spatial rather than linear epitopes of bacterial polysaccharides. This side activity of Sepharose matrix should be taken into account in isolating target antibodies and other proteins from human blood.


Assuntos
Anticorpos Antibacterianos/isolamento & purificação , Polissacarídeos Bacterianos/química , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Humanos , Polissacarídeos Bacterianos/imunologia , Sefarose/química
6.
Front Immunol ; 10: 342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891034

RESUMO

Gut commensal bacteria are known to have a significant role in regulating the innate and adaptive immune homeostasis. Alterations in the intestinal microbial composition have been associated with several disease states, including autoimmune and inflammatory conditions. However, it is not entirely clear how commensal gut microbiota modulate and contribute to the systemic immunity, and whether circulating elements of the host immune system could regulate the microbiome. Thus, we have studied the diversity and abundance of specific taxons in the gut microbiota of inbred GalT-KO mice during 7 months of animal life by metagenetic high-throughput sequencing (16S rRNA gene, variable regions V3-V5). The repertoire of glycan-specific natural antibodies, obtained by printed glycan array technology, was then associated with the microbial diversity for each animal by metagenome-wide association studies (MWAS). Our data show that the orders clostridiales (most abundant), bacteriodales, lactobacillales, and deferribacterales may be associated with the development of the final repertoire of natural anti-glycan antibodies in GalT-KO mice. The main changes in microbiota diversity (month-2 and month-3) were related to important changes in levels and repertoire of natural anti-glycan antibodies in these mice. Additionally, significant positive and negative associations were found between the gut microbiota and the pattern of specific anti-glycan antibodies. Regarding individual features, the gut microbiota and the corresponding repertoire of natural anti-glycan antibodies showed differences among the examined animals. We also found redundancy in different taxa associated with the development of specific anti-glycan antibodies. Differences in microbial diversity did not, therefore, necessarily influence the overall functional output of the gut microbiome of GalT-KO mice. In summary, the repertoire of natural anti-carbohydrate antibodies may be partially determined by the continuous antigenic stimulation produced by the gut bacterial population of each GalT-KO mouse. Small differences in gut microbiota diversity could determine different repertoire and levels of natural anti-glycan antibodies and consequently might induce different immune responses to pathogens or other potential threats.


Assuntos
Anticorpos/imunologia , Microbioma Gastrointestinal/imunologia , Microbiota/imunologia , Polissacarídeos/imunologia , Animais , Antígenos/imunologia , Bactérias/imunologia , Feminino , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Metagenoma/imunologia , Camundongos , Camundongos Knockout , RNA Ribossômico 16S/imunologia
7.
Biotechniques ; 64(3): 110-116, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570442

RESUMO

Despite considerable success studying glycan-binding proteins using printed glycan arrays (PGAs), unambiguous quantitation of spot intensities by fluorescent readers remains a challenge. The main obstacles are the varying spot shape and size and in-spot fluorescence distribution caused by uneven drying of the printed drops. Two methods have been suggested for solving this problem: using polymeric glycoconjugates, which makes it possible to equalize the physicochemical properties (hydrophobicity, charge, and size) of different glycans, and applying a glycan solution on a slide coated with a thin oil mask, which hinders evaporation of the drop. Both approaches yield spots with similar sizes and an even distribution of the signal across the spot and are likely to be useful for improving the prints of other classes of molecules.


Assuntos
Bioimpressão/instrumentação , Glicoconjugados/química , Dispositivos Lab-On-A-Chip , Análise em Microsséries/instrumentação , Polímeros/química , Polissacarídeos/química , Animais , Anticorpos/imunologia , Bioimpressão/métodos , Fluorescência , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Análise em Microsséries/métodos , Polissacarídeos/imunologia
8.
Front Immunol ; 8: 1449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163519

RESUMO

One of the most common genetic backgrounds for mice used as a model to investigate human diseases is the inbred BALB/c strain. This work is aimed to characterize the pattern of natural anti-carbohydrate antibodies present in the serum of 20 BALB/c mice by printed glycan array technology and to compare their binding specificities with that of human natural anti-carbohydrate antibodies. Natural antibodies (NAbs) from the serum of BALB/c mice interacted with 71 glycans from a library of 419 different carbohydrate structures. However, only seven of these glycans were recognized by the serum of all the animals studied, and other five glycans by at least 80% of mice. The pattern of the 12 glycans mostly recognized by the circulating antibodies of BALB/c mice differed significantly from that observed with natural anti-carbohydrate antibodies in humans. This lack of identical repertoires of natural anti-carbohydrate antibodies between individual inbred mice, and between mice and humans, should be taken into consideration when mouse models are intended to be used for investigation of NAbs in biomedical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA