Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373391

RESUMO

Detecting when and how much a protein molecule is synthesized is important for understanding cell function, but current methods either cannot be performed in vivo or have poor temporal resolution. Here, we developed a technique to detect and quantify subcellular protein synthesis events in real time in vivo. This Protein Translation Reporting (PTR) technique uses a genetic tag that produces a stoichiometric ratio of a small peptide portion of a split fluorescent protein and the protein of interest during protein synthesis. We show that the split fluorescent protein peptide can generate fluorescence within milliseconds upon binding the larger portion of the fluorescent protein, and that the fluorescence intensity is directly proportional to the number of molecules of the protein of interest synthesized. Using PTR, we tracked and measured protein synthesis events in single cells over time in vivo. We use different color split fluorescent proteins to detect multiple genes or alleles in single cells simultaneously. We also split a photoswitchable fluorescent protein to photoconvert the reconstituted fluorescent protein to a different channel to continually reset the time of detection of synthesis events.

2.
J Proteome Res ; 23(7): 2598-2607, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965919

RESUMO

To our knowledge, calibration curves or other validations for thousands of SomaScan aptamers are not publicly available. Moreover, the abundance of urine proteins obtained from these assays is not routinely validated with orthogonal methods (OMs). We report an in-depth comparison of SomaScan readout for 23 proteins in urine samples from patients with diabetic kidney disease (n = 118) vs OMs, including liquid chromatography-targeted mass spectrometry (LC-MS), ELISA, and nephelometry. Pearson correlation between urine abundance of the 23 proteins from SomaScan 3.2 vs OMs ranged from -0.58 to 0.86, with a median (interquartile ratio, [IQR]) of 0.49 (0.18, 0.53). In multivariable linear regression, the SomaScan readout for 6 of the 23 examined proteins (26%) was most strongly associated with the OM-derived abundance of the same (target) protein. For 3 of 23 (13%), the SomaScan and OM-derived abundance of each protein were significantly associated, but the SomaScan readout was more strongly associated with OM-derived abundance of one or more "off-target" proteins. For the remaining 14 proteins (61%), the SomaScan readouts were not significantly associated with the OM-derived abundance of the targeted proteins. In 6 of the latest group, the SomaScan readout was not associated with urine abundance of any of the 23 quantified proteins. To sum, over half of the SomaScan results could not be confirmed by independent orthogonal methods.


Assuntos
Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/urina , Cromatografia Líquida/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Ensaio de Imunoadsorção Enzimática , Proteômica/métodos , Espectrometria de Massas/métodos , Idoso , Nefelometria e Turbidimetria , Biomarcadores/urina , Proteinúria/urina
3.
J Proteome Res ; 23(4): 1351-1359, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38445850

RESUMO

Targeted mass spectrometry (MS)-based absolute quantitative analysis has been increasingly used in biomarker discovery. The ability to accurately measure the masses by MS enabled the use of isotope-incorporated surrogates having virtually identical physiochemical properties with the target analytes as calibrators. Such a unique capacity allowed for accurate in-sample calibration. Current in-sample calibration uses multiple isotopologues or structural analogues for both the surrogate and the internal standard. Here, we simplified this common practice by using endogenous light peptides as the internal standards and used a mathematical deduction of "heavy matching light, HML" to directly quantify an endogenous analyte. This method provides all necessary assay performance parameters in the authentic matrix, including the lower limit of quantitation (LLOQ) and intercept of the calibration curve, by using only a single isotopologue of the analyte. This method can be applied to the quantitation of proteins, peptides, and small molecules. Using this method, we quantified the efficiency of heart tissue digestion and recovery using sodium deoxycholate as a detergent and two spiked exogenous proteins as mimics of heart proteins. The results demonstrated the robustness of the assay.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Calibragem , Proteínas , Peptídeos
4.
Anal Bioanal Chem ; 416(2): 387-396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008782

RESUMO

Quantitative analysis relies on pure-substance primary calibrators with known mass fractions of impurity. Here, label-free quantification (LFQ) is being evaluated as a readily available, reliable method for determining the mass fraction of host cell proteins (HCPs) in bioengineered proteins which are intended for use as protein calibration standards. In this study a purified hemoglobin-A2 (HbA2) protein, obtained through its overexpression in E. coli, was used. Two different materials were produced: natural and U15N-labeled HbA2. For the quantification of impurities, precursor ion (MS1-) intensities were integrated over all E. coli proteins identified and divided by the intensities obtained for HbA2. This ratio was calibrated against the corresponding results for an E. coli cell lysate, which had been spiked at known mass ratios to pure HbA2. To demonstrate the universal applicability of LFQ, further proteomes (yeast and human K562) were then alternatively used for calibration and found to produce comparable results. Valid results were also obtained when the complexity of the calibrator was reduced to a mix of just nine proteins, and a minimum of five proteins was estimated to be sufficient to keep the sampling error below 15%. For the studied materials, HbA2 mass fractions (or purities) of 923 and 928 mg(HbA2)/g(total protein) were found with expanded uncertainties (U) of 2.8 and 1.3%, resp. Value assignment by LFQ thus contributes up to about 3% of the overall uncertainty of HbA2 quantification when these materials are used as calibrators. Further purification of the natural HbA2 yielded a mass fraction of 999.1 mg/g, with a negligible uncertainty (U = 0.02%), though at a significant loss of material. If an overall uncertainty of 5% is acceptable for protein quantification, working with the original materials would therefore definitely be viable, circumventing the need of further purification.


Assuntos
Escherichia coli , Hemoglobinas , Humanos , Hemoglobinas/análise , Hemoglobina A2/análise , Padrões de Referência , Proteoma
5.
Anal Bioanal Chem ; 416(19): 4383-4396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904797

RESUMO

Antibodies for treatment and prophylaxis against SARS-CoV-2 are needed particularly for immunocompromised individuals, who cannot adequately benefit from vaccination. To address this need, Aerium Therapeutics is developing antibodies targeting the SARS-CoV-2 spike protein. A bioanalytical method to quantify fully human monoclonal antibodies in a population with widely varying anti-spike antibody titers is required to investigate the pharmacokinetics of these antibodies in clinical trials. To eliminate interference from endogenous anti-spike protein antibodies, an HPLC-MS/MS assay was developed to quantify the investigational monoclonal antibodies (AER001 and AER002) by targeting signature peptides spanning the monoclonal antibodies' CDR regions. By optimizing and comparing affinity capture and ammonium sulphate precipitation, it was demonstrated that both procedures allowed accurate and precise quantification of AER001 and AER002 in human serum with comparable sensitivity. Ammonium sulphate precipitation outperformed immunocapture due to its simplicity and speed at lower cost and a full bioanalytical method validation was performed in human serum. The assay was also validated for human nasal lining fluid extract with a 50-fold lower limit of quantification and was shown to deliver similar sensitivity to previously published affinity capture HPLC-MS/MS assays. Finally, the CDR-derived signature peptides were also generated by tryptic digestion of blank serum in some individuals, an important caveat for HPLC-MS/MS strategies targeting human monoclonal antibodies. In summary, the presented results show that ammonium sulphate precipitation and HPLC-MS/MS allow accurate and precise quantification of monoclonals in clinical studies. The developed methods demonstrate that HPLC-MS/MS can reliably quantify human monoclonal antibodies even when endogenous antibodies with overlapping specificities are present and are crucial for the clinical testing of two investigational COVID-19 monoclonals.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19 , Humanos , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cromatografia Líquida de Alta Pressão/métodos , COVID-19/sangue , Limite de Detecção , Espectrometria de Massa com Cromatografia Líquida , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Espectrometria de Massas em Tandem/métodos
6.
J Appl Toxicol ; 44(8): 1214-1235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38654465

RESUMO

Thiazolidinediones (TZDs) (e.g. pioglitazone and rosiglitazone), known insulin sensitiser agents for type II diabetes mellitus, exhibit controversial effects on cardiac tissue. Despite consensus on their association with increased heart failure risk, limiting TZD use in diabetes management, the underlying mechanisms remain uncharacterised. Herein, we report a comprehensive in vitro investigation utilising a novel toxicoproteomics pipeline coupled with cytotoxicity assays in human adult cardiomyocytes to elucidate mechanistic insights into TZD cardiotoxicity. The cytotoxicity assay findings showed a significant loss of mitochondrial adenosine triphosphate production upon exposure to either TZD agents, which may underpin TZD cardiotoxicity. Our toxicoproteomics analysis revealed that mitochondrial dysfunction primarily stems from oxidative phosphorylation impairment, with distinct signalling mechanisms observed for both agents. The type of cell death differed strikingly between the two agents, with rosiglitazone exhibiting features of caspase-dependent apoptosis and pioglitazone implicating mitochondrial-mediated necroptosis, as evidenced by the protein upregulation in the phosphoglycerate mutase family 5-dynamin-related protein 1 axis. Furthermore, our analysis revealed additional mechanistic aspects of cardiotoxicity, showcasing drug specificity. The downregulation of various proteins involved in protein machinery and protein processing in the endoplasmic reticulum was observed in rosiglitazone-treated cells, implicating proteostasis in the rosiglitazone cardiotoxicity. Regarding pioglitazone, the findings suggested the potential activation of the interplay between the complement and coagulation systems and the disruption of the cytoskeletal architecture, which was primarily mediated through the integrin-signalling pathways responsible for pioglitazone-induced myocardial contractile failure. Collectively, this study unlocks substantial mechanistic insight into TZD cardiotoxicity, providing the rationale for future optimisation of antidiabetic therapies.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Pioglitazona , Proteômica , Rosiglitazona , Tiazolidinedionas , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tiazolidinedionas/toxicidade , Proteômica/métodos , Rosiglitazona/farmacologia , Hipoglicemiantes/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731875

RESUMO

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Assuntos
Acrilamida , Cisteína , Iodoacetamida , Proteômica , Iodoacetamida/química , Alquilação , Cisteína/química , Cisteína/análise , Acrilamida/química , Acrilamida/análise , Humanos , Proteômica/métodos , Espectrometria de Massas/métodos , Marcação por Isótopo/métodos , Peptídeos/química , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos
8.
J Proteome Res ; 22(8): 2703-2713, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37493966

RESUMO

Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously determine the abundances of 20 key structural and functional proteins residing in mouse rod outer segments. We computed the absolute number of molecules of each protein residing within an individual outer segment and the molar ratio among all 20 proteins. The molar ratios of proteins comprising three well-characterized constitutive complexes in outer segments differed from the established subunit stoichiometries of these complexes by less than 7%, highlighting the exceptional precision of our quantification. Overall, this study resolves multiple existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.


Assuntos
Proteínas , Segmento Externo da Célula Bastonete , Animais , Camundongos , Proteínas/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Transdução de Sinal Luminoso , Retina/metabolismo
9.
J Proteome Res ; 22(1): 91-100, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36412001

RESUMO

Apolipoprotein C-III (APOC-III) regulates triglyceride levels, associated with a risk of cardiovascular disease. One gene generates several proteoforms, each with a different molecular mass and a unique function. Unlike peptide multiple reaction monitoring (MRM), protein-MRM without digestion is required to analyze clinically relevant individual proteoforms. We developed a protein-MRM method without digestion to individually quantify APOC-III proteoforms in human serum. We optimized the protein-MRM method following 60% acetonitrile extraction with C18 filtration. Bovine serum and myoglobin served as supporting cushions and the internal standard during sample preparation, respectively. Furthermore, we evaluated the LOD, lower limit of quantification, linearity, accuracy, and precision. Good correlation compared with turbidimetric immunoassay (TIA) and peptide-MRM was observed using 30 clinical sera. Individual APOC-III O-glycoforms were identified by top-down proteomics and simultaneously quantified using the protein-MRM method. The sum abundance of APOC-III proteoforms was significantly correlated with TIA and peptide-MRM. Our protein-MRM method provides an affordable and rapid quantification of potential disease-specific proteoforms. Precise quantification of each proteoform allows investigators to identify novel biological roles potentially related to cardiovascular disease or novel biomarkers. We expect our protein-oriented method to be more clinically useful than antibody-based immunoassays and peptide-oriented MRM analysis, especially for quantification of a biomarker proteoform with certain post-translational modifications.


Assuntos
Doenças Cardiovasculares , Humanos , Apolipoproteína C-III/metabolismo , Doenças Cardiovasculares/diagnóstico , Proteínas , Processamento de Proteína Pós-Traducional
10.
Biologicals ; 82: 101675, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028215

RESUMO

Host cell proteins (HCPs) are a major class of process-related impurities that need to be closely monitored during the production of biotherapeutics. Mass spectrometry (MS) has emerged as a promising tool for HCP analysis due to its specificity for individual HCP's identification and quantitation. However, utilization of MS as a routine characterization tool is still limited due to the time-consuming procedures, non-standardized instrumentation and methodologies, and the limited sensitivity compared to the enzyme-linked immunosorbent assays (ELISA). In this study, we introduced a sensitive (limit of detection (LOD) at 1-2 ppm) and robust HCP profiling platform method with suitable precision and accuracy that can be readily adopted to antibodies and other biotherapeutic modalities without the need for HCP enrichment. The NIST mAb and multiple in-house antibodies were analyzed, and results were benchmarked with other reported studies. In addition, a targeted analysis method with optimized sample preparation for absolute quantitation of lipases was developed and qualified with an LOD of 0.6 ppm and precision of <15%, which can be further improved to an LOD of 5 ppb by using the nano-flow LC.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Cricetinae , Animais , Cromatografia Líquida/métodos , Cricetulus , Espectrometria de Massas em Tandem/métodos , Proteínas/análise , Anticorpos , Células CHO
11.
Mikrochim Acta ; 190(4): 144, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939899

RESUMO

Conventional cellular protein detection techniques such as immunocytochemistry and flow cytometry require abundant cells, posing multiple challenges, including difficulty and cost for obtaining enough cells and the potential for clogging the instrument when using flow cytometry. Also, it is challenging to conduct cellular protein imaging and quantification simultaneously from a single experiment. We present a novel 3D platform, which integrates highly biocompatible cell-entrapped alginate hydrogel droplet array with gold-nanoparticle (AuNP)-based metal enhanced fluorescence (MEF), to achieve simultaneous imaging and quantification of proteins in intact cells in a sensitive manner. Compared to 2D immunocytochemistry, this 3D system allows for a higher cell loading capacity per unit area; together with the MEF-based signal enhancement from the embedded AuNPs, sensitive protein quantification was realized. Furthermore, compared to flow cytometry, this platform allows for protein imaging from individual cells. Taking the detection of EpCAM protein in ovarian cancer cells as a model, we optimized the AuNP size and concentration for optimal fluorescent signals. The 5 nm AuNPs at 6.54 × 1013 particles/mL proved to be the most effective in signal enhancement, providing 2.4-fold higher signals compared to that without AuNPs and 6.4-fold higher signals than that of 2D immunocytochemistry. The number of cells required in our technology is 1-3 orders of magnitude smaller than that of conventional methods. This AuNP-embedded hydrogel platform combines the benefits of immunocytochemistry and flow cytometry, providing increased assay sensitivity while also allowing for qualitative analysis through imaging, suitable for protein determination in a variety of cells.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Ouro , Fluorescência
12.
Angew Chem Int Ed Engl ; 62(22): e202303656, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37016511

RESUMO

Stable isotope chemical labeling methods have been widely used for high-throughput mass spectrometry (MS)-based quantitative proteomics in biological and clinical applications. However, the existing methods are far from meeting the requirements for high sensitivity detection. In the present study, a novel isobaric stable isotope N-phosphorylation labeling (iSIPL) strategy was developed for quantitative proteome analysis. The tryptic peptides were selectively labeled with iSIPL tag to generate the novel reporter ions containing phosphoramidate P-N bond with high intensities under lower collision energies. iSIPL strategy are suitable for peptide sequencing and quantitative analysis with high sensitivity and accuracy even for samples of limited quantity. Furthermore, iSIPL coupled with affinity purification and mass spectrometry was applied to measure the dynamics of cyclin dependent kinase 9 (CDK9) interactomes during transactivation of the HIV-1 provirus. The interaction of CDK9 with PARP13 was found to significantly decrease during Tat-induced activation of HIV-1 gene transcription, suggesting the effectiveness of iSIPL strategy in dynamic analysis of protein-protein interaction in vivo. More than that, the proposed iSIPL strategy would facilitate large-scale accurate quantitative proteomics by increasing multiplexing capability.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Fosforilação , Peptídeos/química , Marcação por Isótopo/métodos , Isótopos
13.
Proteomics ; 22(19-20): e2100253, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35776068

RESUMO

In mass spectrometry (MS)-based quantitative proteomics, labeling with isobaric mass tags such as iTRAQ and TMT can substantially improve sample throughput and reduce peptide missing values. Nonetheless, the quantification of labeled peptides tends to suffer from reduced accuracy due to the co-isolation of co-eluting precursors of similar mass-to-charge. Acquisition approaches such as multistage MS3 or ion mobility separation address this problem, yet are difficult to audit and limited to expensive instrumentation. Here we introduce IsobaricQuant, an open-source software tool for quantification, visualization, and filtering of peptides labeled with isobaric mass tags, with specific focus on precursor interference. IsobaricQuant is compatible with MS2 and MS3 acquisition strategies, has a viewer that allows assessing interference, and provides several scores to aid the filtering of scans with compression. We demonstrate that IsobaricQuant quantifications are accurate by comparing it with commonly used software. We further show that its QC scores can successfully filter out scans with reduced quantitative accuracy at MS2 and MS3 levels, removing inaccurate peptide quantifications and decreasing protein CVs. Finally, we apply IsobaricQuant to a PISA dataset and show that QC scores improve the sensitivity of the identification of protein targets of a kinase inhibitor. IsobaricQuant is available at https://github.com/Villen-Lab/isobaricquant.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/química , Espectrometria de Massas/métodos
14.
Expert Rev Proteomics ; 19(3): 153-164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36221222

RESUMO

INTRODUCTION: Due to its excellent sensitivity, nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) is the mainstay in proteome research; however, this comes at the expense of limited throughput and robustness. In contrast, micro-flow LC-MS/MS enables high-throughput, robustness, quantitative reproducibility, and precision while retaining a moderate degree of sensitivity. Such features make it an attractive technology for a wide range of proteomic applications. In particular, large-scale projects involving the analysis of hundreds to thousands of samples. AREAS COVERED: This review summarizes the history of chromatographic separation in discovery proteomics with a focus on micro-flow LC-MS/MS, discusses the current state-of-the-art, highlights advances in column development and instrumentation, and provides guidance on which LC flow best supports different types of proteomic applications. EXPERT OPINION: Micro-flow LC-MS/MS will replace nano-flow LC-MS/MS in many proteomic applications, particularly when sample quantities are not limited and sample cohorts are large. Examples include clinical analyses of body fluids, tissues, drug discovery and chemical biology investigations, plus systems biology projects across all kingdoms of life. When combined with rapid and sensitive MS, intelligent data acquisition, and informatics approaches, it will soon become possible to analyze large cohorts of more than 10,000 samples in a comprehensive and fully quantitative fashion.


Assuntos
Proteoma , Proteômica , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes
15.
Phys Biol ; 19(3)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35290963

RESUMO

Quantifying the absolute protein number using the ratio between the variance and the mean of the protein Fluorescence intensity is a straightforward method for microscopy imaging. Recently, this method has been expanded to fluorescence decaying processes due to photobleaching with binomial distribution. The article examines the method proposed and shows how it can be adapted to the case of variance in the initial number of proteins between the cells. The article shows that the method can be improved by the implementation of the information processing of each frame independently from other frames. By doing so, the variance in determining the protein number can be reduced. In addition, the article examines the management of unwanted noises in the measurement, offers a solution for the shot noise and background noise, examines the expected error caused by the decay constant inaccuracy, and analyzes the expected difficulties in conducting a practical experiment, which includes a non-exponential decay and variance in the photobleaching rate of the cells. The method can be applied to any superposition ofn0discrete decaying processes. However, the evaluation of expected errors in quantification is essential for early planning of the experimental conditions and evaluation of the error.


Assuntos
Microscopia , Fluorescência , Fotodegradação
16.
Anal Bioanal Chem ; 414(15): 4457-4470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320366

RESUMO

Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen.


Assuntos
Colorimetria , Proteínas , Aminoácidos/análise , Aminoácidos Aromáticos , Cromatografia Líquida/métodos , Colorimetria/métodos , Material Particulado , Proteínas/análise
17.
Mol Cell Proteomics ; 19(10): 1706-1723, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32680918

RESUMO

Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.


Assuntos
Marcação por Isótopo , Proteoma/metabolismo , Estatística como Assunto , Espectrometria de Massas em Tandem , Humanos , Proteômica
18.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161887

RESUMO

This paper deals with the quantification of proteins by implementing the Bradford protein assay method in a portable opto-microfluidic platform for protein concentrations lower than 1.4 mg/mL. Absorbance is measured by way of optical waveguides integrated to a cross-junction microfluidic circuit on a single lithium niobate substrate. A new protocol is proposed to perform the protein quantification based on the high correlation of the light absorbance at 595 nm, as commonly used in the Bradford method, with the one achieved at 633 nm with a cheap commercially available diode laser. This protocol demonstrates the possibility to quantify proteins by using nL volumes, 1000 times less than the standard technique such as paper-analytical devices. Moreover, it shows a limit of quantification of at least 0.12 mg/mL, which is four times lower than the last literature, as well as a better accuracy (98%). The protein quantification is obtained either by using one single microfluidic droplet as well by performing statistical analysis over ensembles of several thousands of droplets in less than 1 min. The proposed methodology presents the further advantage that the protein solutions can be reused for other investigations and the same pertains to the opto-microfluidic platform.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Bioensaio , Dispositivos Lab-On-A-Chip , Nióbio , Óxidos
19.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35955668

RESUMO

The quantification of low abundant membrane-binding proteins such as transcriptional factors and chaperones has proven difficult, even with the most sophisticated analytical technologies. Here, we exploit and optimise the non-invasive Fluorescence Correlation Spectroscopy (FCS) for the quantitation of low abundance proteins, and as proof of principle, we choose two interacting proteins involved in the fission of mitochondria in yeast, Fis1p and Mdv1p. In Saccharomyces cerevisiae, the recruitment of Fis1p and Mdv1p to mitochondria is essential for the scission of the organelles and the retention of functional mitochondrial structures in the cell. We use FCS in single GFP-labelled live yeast cells to quantify the protein abundance in homozygote and heterozygote cells and to investigate the impact of the environments on protein copy number, bound/unbound protein state and mobility kinetics. Both proteins were observed to localise predominantly at mitochondrial structures, with the Mdv1p bound state increasing significantly in a strictly respiratory environment. Moreover, a compensatory mechanism that controls Fis1p abundance upon deletion of one allele was observed in Fis1p but not in Mdv1p, suggesting differential regulation of Fis1p and Mdv1p protein expression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077305

RESUMO

Neofusicoccum parvum can cause twig blight of the walnut (Juglans spp.), resulting in great economic losses and ecological damage. We performed proteomic tandem mass tags (TMT) quantification of two Neofusicoccum parvum strains with different substrates, BH01 in walnut substrate (SW) and sterile water (SK), and BH03 in walnut substrate (WW) and sterile water (WK), in order to identify differentially expressed proteins. We identified 998, 95, and 489 differentially expressed proteins (DEPs) between the SK vs. WK, SW vs. SK, and WW vs. WK comparison groups, respectively. A phylogenetic analysis was performed to classify the ABC transporter proteins annotated in the TMT protein quantification into eight groups. Physicochemical and structural analyses of the 24 ATP-binding cassette (ABC) transporter proteins revealed that 14 of them had transmembrane structures. To elucidate the functions of these transmembrane proteins, we determined the relative expression levels of ABC transporter genes in strains cultured in sodium chloride, hydrogen peroxide, copper sulfate, and carbendazim mediums, in comparison with pure medium; analysis revealed differential upregulation. To verify the expression results, we knocked out the NpABC2 gene and compared the wild-type and knockout mutant strains. The knockout mutant strains exhibited a higher sensitivity to antifungal drugs. Furthermore, the virulence of the knockout mutant strains was significantly lower than the wild-type strains, thus implying that NpABC2 plays a role in the drug resistance of N. parvum and affects its virulence.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteoma , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ascomicetos , Filogenia , Proteoma/metabolismo , Proteômica , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA