Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
New Phytol ; 214(3): 1118-1131, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28240348

RESUMO

Understanding how drought affects seeder and resprouter plants during post-fire regeneration is important for the anticipation of Mediterranean vegetation vulnerability in a context of increasing drought and fire caused by climate change. A Mediterranean shrubland was subjected to various drought treatments (including 45% rainfall reduction, 7 months drought yr-1 ), before and after experimental burning, by means of a rainout-shelter system with an irrigation facility. Predawn shoot water potential (Ψpd ), relative growth rate (RGR), specific leaf area (SLA) and bulk leaf carbon isotopic composition (δ13 C) were monitored in the main woody species during the first 3 yr after fire. Cistus ladanifer seedlings showed higher Ψpd , RGR and SLA, and lower δ13 C, than unburned plants during the first two post-fire years. Seedlings under drought maintained relatively high Ψpd , but suffered a decrease in Ψpd and RGR, and an increase in δ13 C, relative to control treatments. Erica arborea, E. scoparia and Phillyrea angustifolia resprouts had higher Ψpd and RGR than unburned plants during the first post-fire year. Resprouters were largely unaffected by drought. Overall, despite marked differences between the two functional groups, post-fire environments were favourable for plant functioning of both seeder and resprouter shrubs, even under the most severe drought conditions implemented.


Assuntos
Secas , Incêndios , Plantas/metabolismo , Análise de Variância , Isótopos de Carbono/metabolismo , Gases/metabolismo , Umidade , Região do Mediterrâneo , Análise Multivariada , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Análise de Componente Principal , Chuva , Estações do Ano , Solo/química , Especificidade da Espécie , Luz Solar , Pressão de Vapor , Água
2.
Ecology ; 105(1): e4198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897690

RESUMO

Belowground niche partitioning presents a key mechanism for maintaining species coexistence and diversity. Its importance is currently reinforced by climate change that alters soil hydrological conditions. However, experimental tests examining the magnitude of its change under climate change are scarce. We combined measurements of oxygen stable isotopes to infer plant water-uptake depths and extreme drought manipulation in grasslands. Belowground niche partitioning was evidenced by different water-uptake depths of co-occurring species under ambient and extreme drought conditions despite an increased overlap among species due to a shift to shallower soil layers under drought. A co-occurrence of contrasting strategies related to the change of species water-uptake depth distribution was likely to be key for species to maintain some extent of belowground niche partitioning and could contribute to stabilizing coexistence under drought. Our results suggest that belowground niche partitioning could mitigate negative effects on diversity imposed by extreme drought under future climate.


Assuntos
Secas , Plantas , Solo , Água , Mudança Climática , Pradaria
3.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33016314

RESUMO

Drought and agricultural management influence soil microorganisms with unknown consequences for the functioning of agroecosystems. We simulated drought periods in organic (biodynamic) and conventional wheat fields and monitored effects on soil water content, microorganisms and crops. Above the wilting point, water content and microbial respiration were higher under biodynamic than conventional farming. Highest bacterial and fungal abundances were found in biodynamically managed soils, and distinct microbial communities characterised the farming systems. Most biological soil quality parameters and crop yields were only marginally affected by the experimental drought, except for arbuscular mycorrhizal fungi (AMF), which increased in abundance under the experimental drought in both farming systems. AMF were further strongly promoted by biodynamic farming resulting in almost three times higher AMF abundance under experimental drought in the biodynamic compared with the conventional farming system. Our data suggest an improved water storage capacity under biodynamic farming and confirms positive effects of biodynamic farming on biological soil quality. The interactive effects of the farming system and drought may further be investigated under more substantial droughts. Given the importance of AMF for the plant's water supply, more in-depth studies on AMF may help to clarify their role for yields under conditions predicted by future climate scenarios.


Assuntos
Micorrizas , Solo , Agricultura , Secas , Agricultura Orgânica , Microbiologia do Solo
4.
Plants (Basel) ; 9(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403343

RESUMO

Terminal drought stress is one of the restrictive factors in rice production and is expected to upsurge under the current situation of climate change. The study evaluated the performance of 2030 rice genotypes under continuous drought stress conditions based on days to flowering (DF). The genotypes under augmented randomized complete block design were sown in May/June of 2017 and 2018 in the field with movable rainout that resulted in huge genetic diversity among the accessions. Descriptive statistics confirmed clear variation among accessions on growth duration, plant height to leaf, plant height to panicle, and germination percentage. Correlation, chemometric, and agglomerative hierarchical cluster analyses were performed that categorized the germplasm into 10 groups. Genotypes in clusters VIII and IX (drought-resistant) revealed better agronomic performance in terms of reduced days to flowering, but conversely taller plant height and higher maturity (%) under severe stress. Genotypes in clusters IV, V, and X were discovered to be drought-susceptible. The screened genotypes like Longjing 12, Longdun 102, Yanjing 22, Liaojing 27, Xiaohongbandao, Songjing 17, and Zaoshuqingsen can be utilized in rice breeding improvement programs for drought tolerance in terms of severe continuous drought, as well as terminal drought stress.

5.
Tree Physiol ; 39(6): 910-924, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865274

RESUMO

Drought-induced tree mortality alters forest structure and function, yet our ability to predict when and how different species die during drought remains limited. Here, we explore how stomatal control and drought tolerance traits influence the duration of drought stress leading to critical levels of hydraulic failure. We examined the growth and physiological responses of four woody plant species (three angiosperms and one conifer) representing a range of water-use and drought tolerance traits over the course of two controlled drought-recovery cycles followed by an extended dry-down. At the end of the final dry-down phase, we measured changes in biomass ratios and leaf carbohydrates. During the first and second drought phases, plants of all species closed their stomata in response to decreasing water potential, but only the conifer species avoided water potentials associated with xylem embolism as a result of early stomatal closure relative to thresholds of hydraulic dysfunction. The time it took plants to reach critical levels of water stress during the final dry-down was similar among the angiosperms (ranging from 39 to 57 days to stemP88) and longer in the conifer (156 days to stemP50). Plant dry-down time was influenced by a number of factors including species stomatal-hydraulic safety margin (gsP90 - stemP50), as well as leaf succulence and minimum stomatal conductance. Leaf carbohydrate reserves (starch) were not depleted at the end of the final dry-down in any species, irrespective of the duration of drought. These findings highlight the need to consider multiple structural and functional traits when predicting the timing of hydraulic failure in plants.


Assuntos
Secas , Magnoliopsida/fisiologia , Pinus/fisiologia , Árvores/fisiologia , Eucalyptus/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Árvores/crescimento & desenvolvimento
6.
Ecology ; 100(12): e02859, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31365121

RESUMO

Global change stressors such as drought and plant invasion can affect ecosystem structure and function via mediation of resource availability and plant competition outcomes. Yet, it remains uncertain how native plants respond to drought stress that co-occurs with potentially novel resource conditions created by a nonnative invader. Further, there is likely to be temporal variation in competition outcomes between native and nonnative plant species depending on which resources are most limiting at a given time. Interacting stressors coupled with temporal variation make it difficult to predict how global change will impact native plant communities. To address this knowledge gap, we conducted a 5-yr factorial field experiment to quantify how simulated drought, plant invasion (by cogongrass, Imperata cylindrica), and these stressors combined, affected resource availability (soil moisture and light) and competition dynamics between the invader and native longleaf pine (Pinus palustris), a foundation species in southeast U.S. forests. Drought and invasion mediated the survival and performance of pine seedlings in temporally dynamic and unexpected ways. Drought and invasion alone each significantly reduced pine seedling survival. However, when the stressors occurred together, the invader offset drought stress for pine seedlings by maintaining high levels of soil moisture, humidity, and shade compared to uninvaded vegetation. This facilitative effect was pronounced for 2 yr, yet shifted to strong competitive exclusion as the invasion progressed and the limiting resource switched from soil moisture to light. After 3 yr, pine tree survival was low except for pines growing with uninvaded vegetation under ambient precipitation conditions. After 5 yr, pines experiencing a single stressor were taller and had greater height to diameter ratios than pines under no stress or both stressors. This outcome revealed a filtering effect where poorly performing trees were culled under stressful conditions, especially when pines were growing with the invader. Together, these results demonstrate that although drought and invasion suppressed a foundation tree species, the invader temporarily moderated stressful drought conditions, and at least some trees were able to survive despite increasingly strong competition. Such unpredictable effects of interacting global change stressors on native plant species highlight the need for additional long-term studies.


Assuntos
Ecossistema , Pinus , Secas , Florestas , Árvores
7.
AoB Plants ; 11(3): plz023, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31065332

RESUMO

Drought can occur at different times during the grassland growing season, likely having contrasting effects on forage production when happening early or later in the season. However, knowledge about the interacting effects of the timing of drought and the development stage of the vegetation during the growing season is still scarce, thus limiting our ability to accurately predict forage quantity losses. To investigate plant community responses to drought seasonality (early- vs. late-season), we established a drought experiment in two permanent grasslands of the Swiss Jura Mountains that are used for forage production. We measured three plant functional traits, including two leaf traits related to plant economics (specific leaf area, SLA; leaf dry matter content, LDMC) and one hydraulic trait related to physiological function (predicted percentage loss of hydraulic conductance, PLCp), of the most abundant species, and plant above-ground biomass production. Plant species composition was also determined to calculate community-weighted mean (CWM) traits. First, we observed that CWM trait values strongly varied during the growing season. Second, we found that late-season drought had stronger effects on CWM trait values than early-season drought and that the plant hydraulic trait was the most variable functional trait. Using a structural equation model, we also showed that reduction in soil moisture had no direct impacts on above-ground biomass production. Instead, we observed that the drought-induced decrease in above-ground biomass production was mediated by a higher CWM PLCp (i.e. higher risk of hydraulic failure) and lower CWM SLA under drought. Change in CWM SLA in response to drought was the best predictor of community above-ground biomass production. Our findings reveal the importance of drought timing together with the plant trait responses to assess drought impacts on grassland biomass production and suggest that incorporating these factors into mechanistic models could considerably improve predictions of climate change impacts.

8.
Ecosystems ; 21(2): 349-359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29540992

RESUMO

Drought is predicted to increase in many areas of the world with consequences for soil carbon (C) dynamics. Plant litter, root exudates and microbial biomass can be used as C substrates to form organo-mineral complexes. Drought effects on plants and microbes could potentially compromise these relative stable soil C pools, by reducing plant C inputs and/or microbial activity. We conducted a 2-year drought experiment using rainout shelters in a semi-natural grassland. We measured aboveground biomass and C and nitrogen (N) in particulate organic matter (Pom), the organo-mineral fraction (Omin), and microbial biomass within the first 15 cm of soil. Aboveground plant biomass was reduced by 50% under drought in both years, but only the dominant C4 grasses were significantly affected. Soil C pools were not affected by drought, but were significantly higher in the relatively wet second year compared to the first year. Omin-C was positively related to microbial C during the first year, and positively related to clay and silt content in the second year. Increases in Omin-C in the second year were explained by increases in legume biomass and its effect on Pom-N and microbial biomass N (MBN) through structural equation modeling. In conclusion, soil C pools were unaffected by the drought treatment. Drought resistant legumes enhanced formation of organo-mineral complexes through increasing Pom-N and MBN. Our findings also indicate the importance of microbes for the formation of Omin-C as long as soil minerals have not reached their maximum capacity to bind with C (that is, saturation).

9.
Ecol Evol ; 7(5): 1442-1452, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28261456

RESUMO

Abiotic global change drivers affect ecosystem structure and function, but how they interact with biotic factors such as invasive plants is understudied. Such interactions may be additive, synergistic, or offsetting, and difficult to predict. We present methods to test the individual and interactive effects of drought and plant invasion on native ecosystems. We coupled a factorial common garden experiment containing resident communities exposed to drought (imposed with rainout shelters) and invasion with a field experiment where the invader was removed from sites spanning a natural soil moisture gradient. We detail treatments and their effects on abiotic conditions, including soil moisture, light, temperature, and humidity, which shape community and ecosystem responses. Ambient precipitation during the garden experiment exceeded historic norms despite severe drought in prior years. Soil moisture was 48% lower in drought than ambient plots, but the invader largely offset drought effects. Additionally, temperature and light were lower and humidity higher in invaded plots. Field sites spanned up to a 10-fold range in soil moisture and up to a 2.5-fold range in light availability. Invaded and resident vegetation did not differentially mediate soil moisture, unlike in the garden experiment. Herbicide effectively removed invaded and resident vegetation, with removal having site-specific effects on soil moisture and light availability. However, light was generally higher in invader-removal than control plots, whereas resident removal had less effect on light, similar to the garden experiment. Invasion mitigated a constellation of abiotic conditions associated with drought stress in the garden experiment. In the field, where other factors co-varied, these patterns did not emerge. Still, neither experiment suggested that drought and invasion will have synergistic negative effects on ecosystems, although invasion can limit light availability. Coupling factorial garden experiments with field experiments across environmental gradients will be effective for predicting how multiple stressors interact in natural systems.

10.
Food Chem ; 153: 145-50, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24491713

RESUMO

Comparing well-watered versus deficit conditions, we evaluated the chemical composition of grains harvested from wild-type (WT) and drought-tolerant, transgenic rice (Oryza sativa L.). The latter had been developed by inserting AtCYP78A7, which encodes a cytochrome P450 protein. Two transgenic Lines, '10B-5' and '18A-4', and the 'Hwayoung' WT were grown under a rainout shelter. After the harvested grains were polished, their levels of key components, including proximates, amino acids, fatty acids, minerals and vitamins were analysed to determine the effect of watering system and genotype. Drought treatment significantly influenced the levels of some nutritional components in both transgenic and WT grains. In particular, the amounts of lignoceric acid and copper in the WT decreased by 12.6% and 39.5%, respectively, by drought stress, whereas those of copper and potassium in the transgenics rose by 88.1-113.3% and 10.4-11.9%, respectively, under water-deficit conditions.


Assuntos
Oryza/química , Oryza/fisiologia , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/fisiologia , Aminoácidos/análise , Secas , Ácidos Graxos/análise , Genótipo , Minerais/análise , Oryza/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Vitaminas/análise , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA