Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992025

RESUMO

In real-time remote sensing application, frames of data are continuously flowing into the processing system. The capability of detecting objects of interest and tracking them as they move is crucial to many critical surveillance and monitoring missions. Detecting small objects using remote sensors is an ongoing, challenging problem. Since object(s) are located far away from the sensor, the target's Signal-to-Noise-Ratio (SNR) is low. The Limit of Detection (LOD) for remote sensors is bounded by what is observable on each image frame. In this paper, we present a new method, a "Multi-frame Moving Object Detection System (MMODS)", to detect small, low SNR objects that are beyond what a human can observe in a single video frame. This is demonstrated by using simulated data where our technology-detected objects are as small as one pixel with a targeted SNR, close to 1:1. We also demonstrate a similar improvement using live data collected with a remote camera. The MMODS technology fills a major technology gap in remote sensing surveillance applications for small target detection. Our method does not require prior knowledge about the environment, pre-labeled targets, or training data to effectively detect and track slow- and fast-moving targets, regardless of the size or the distance.

2.
Mar Pollut Bull ; 173(Pt A): 112996, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34627034

RESUMO

As climate change brings reduced sea ice cover and longer ice-free summers to the Arctic, northern Canada is experiencing an increase in shipping and industrial activity in this sensitive region. Disappearing sea ice, therefore, makes the Arctic region susceptible to accidental releases of different types of oil and fuel pollution resulting in a pressing need for the development of appropriate scientific knowledge necessary to inform regulatory policy formulation. In this study, we examine the microstructure of the surficial layers of sea ice exposed to oil using X-ray microtomography. Through analysis, 3D imaging of the spatial distribution of the ice's components (brine, air, and oil) were made. Additional quantitative information regarding the size, proximity, orientation, and geometry of oil inclusions were computed to ascertain discernable relationships between oil and the other components of the ice. Our results indicate implications for airborne remote sensing and bioremediation of the upper sea ice layers.


Assuntos
Camada de Gelo , Petróleo , Regiões Árticas , Tecnologia de Sensoriamento Remoto , Microtomografia por Raio-X
3.
Front Plant Sci ; 8: 887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620399

RESUMO

The rapid spread of invasive plants makes their management increasingly difficult. Remote sensing offers a means of fast and efficient monitoring, but still the optimal methodologies remain to be defined. The seasonal dynamics and spectral characteristics of the target invasive species are important factors, since, at certain time of the vegetation season (e.g., at flowering or senescing), plants are often more distinct (or more visible beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient, computer-assisted method applicable over larger areas, to reduce the costs of extensive field campaigns. To achieve this goal, we examined how the timing of monitoring affects the detection of noxious plant invaders in Central Europe, using two model herbaceous species with markedly different phenological, structural, and spectral characteristics. They are giant hogweed (Heracleum mantegazzianum), a species with very distinct flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F. × bohemica). The variety of data generated, such as imagery from purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution (i.e., the target species' phenological state) for successful recognition. The demands for both spatial and spectral resolution depended largely on the target plant species. In the case that a species was sampled at the most distinct phenological phase, high accuracy was achieved even with lower spectral resolution of our low-cost UAV. This demonstrates that proper timing can to some extent compensate for the lower spectral resolution. The results of our study could serve as a basis for identifying priorities for management, targeted at localities with the greatest risk of invasive species' spread and, once eradicated, to monitor over time any return. The best mapping strategy should reflect morphological and structural features of the target plant and choose appropriate spatial, spectral, and temporal resolution. The UAV enables flexible data acquisition for required time periods at low cost and is, therefore, well-suited for targeted monitoring; while satellite imagery provides the best solution for larger areas. Nonetheless, users must be aware of their limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA