Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 40: 395-424, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28460185

RESUMO

The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Retina/fisiologia , Vias Visuais/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Estimulação Luminosa , Retina/metabolismo , Vias Visuais/metabolismo
2.
J Physiol ; 599(1): 231-252, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997815

RESUMO

KEY POINTS: Rhythmic processes in living organisms are controlled by biological clocks. The orexinergic system of the lateral hypothalamus carries circadian information to provide arousal for the brain during the active phase. Here, we show that orexins exert an excitatory action in three parts of the lateral geniculate nucleus (LGN), in particular upon directly retinorecipient neurons in the non-image forming visual structures. We provide evidence for the high nocturnal levels of orexins with stable circadian expression of predominant orexin receptor 2 in the LGN. Our data additionally establish the convergence of orexinergic and pituitary adenylate cyclase (PAC)-activating peptide/PAC1 receptor systems (used by melanopsin-expressing retinal ganglion cells), which directly regulates responses to the retinal input. These results help us better understand circadian orexinergic control over the non-image forming subcortical visual system, forming the animal's preparedness for the behaviourally active night. ABSTRACT: The orexinergic system of the lateral hypothalamus is tightly interlinked with the master circadian clock and displays daily variation in activity to provide arousal-related excitation for the plethora of brain structures in a circadian manner. Here, using a combination of electrophysiological, optogenetic, histological, molecular and neuronal tracing methods, we explore a particular link between orexinergic and visual systems in rat. The results of the present study demonstrate that orexinergic fibre density at the area of subcortical visual system exerts a clear day to night variability, reaching a maximum at behaviourally active night. We also show pronounced electrophysiological activations of neurons in the lateral geniculate nucleus by orexin A through 24 h, via identified distinct orexin receptors, with the ventrolateral geniculate displaying a daily cycle of responsiveness. In addition, for the first time, we provide a direct evidence for orexins to act on retinorecipient neurons with a high convergence of orexinergic and putatively retinal pituitary adenylate cyclase (PAC)-activating peptide/PAC1 receptor systems. Altogether, the present study ties orexins to non-image forming visual structures with implications for circadian orexinergic modulation of neurons, which process information on ambient light levels.


Assuntos
Corpos Geniculados , Neurônios , Animais , Ritmo Circadiano , Região Hipotalâmica Lateral/metabolismo , Neurônios/metabolismo , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Ratos
3.
J Neurosci ; 35(16): 6575-83, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904807

RESUMO

The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences.


Assuntos
Tronco Encefálico/fisiologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Tronco Encefálico/citologia , Feminino , Masculino , Camundongos , Retina , Células Ganglionares da Retina/citologia , Colículos Superiores/citologia , Vias Visuais/citologia
4.
J Neurophysiol ; 116(2): 602-10, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27169509

RESUMO

The mammalian retina conveys the vast majority of information about visual stimuli to two brain regions: the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). The degree to which retinal ganglion cells (RGCs) send similar or distinct information to the two areas remains unclear despite the important constraints that different patterns of RGC input place on downstream visual processing. To resolve this ambiguity, we injected a glycoprotein-deficient rabies virus coding for the expression of a fluorescent protein into the dLGN or SC; rabies virus labeled a smaller fraction of RGCs than lipophilic dyes such as DiI but, crucially, did not label RGC axons of passage. Approximately 80% of the RGCs infected by rabies virus injected into the dLGN were colabeled with DiI injected into the SC, suggesting that many dLGN-projecting RGCs also project to the SC. However, functional characterization of RGCs revealed that the SC receives input from several classes of RGCs that largely avoid the dLGN, in particular RGCs in which 1) sustained changes in light intensity elicit transient changes in firing rate and/or 2) a small range of stimulus sizes or temporal fluctuations in light intensity elicit robust activity. Taken together, our results illustrate several unexpected asymmetries in the information that the mouse retina conveys to two major downstream targets and suggest that differences in the output of dLGN and SC neurons reflect, at least in part, differences in the functional properties of RGCs that innervate the SC but not the dLGN.


Assuntos
Corpos Geniculados/citologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/citologia , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Técnicas de Patch-Clamp , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
J Neurosci ; 34(40): 13458-71, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274823

RESUMO

The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role.


Assuntos
Neurônios/classificação , Neurônios/fisiologia , Colículos Superiores/citologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Channelrhodopsins , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Piridazinas/farmacologia , Quinoxalinas/farmacologia , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Valina/análogos & derivados , Valina/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
6.
Front Neural Circuits ; 17: 1088686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817647

RESUMO

The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.


Assuntos
Callithrix , Retina , Animais , Callithrix/fisiologia , Encéfalo/fisiologia , Visão Ocular , Neurônios , Mamíferos
7.
J Comp Neurol ; 525(4): 753-772, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27560037

RESUMO

In vertebrates, the pretectum and optic tectum (superior colliculus in mammals) are visuomotor areas that process sensory information and shape motor responses. Whereas the tectum has been investigated in great detail, the pretectum has received far less attention. The present study provides a detailed analysis of the connectivity and neuronal properties of lamprey pretectal cells. The pretectum can be subdivided roughly into three areas based on cellular location and projection pattern: superficial, central, and periventricular. Three different types of pretectal cells could be distinguished based on neuronal firing patterns. One type, the rapid spike-inactivation cells, preferentially lie within the periventricular zone; the other cell types are distributed more generally. In terms of afferentation, the pretectum receives electro- and mechanoreceptive inputs in addition to retinal input. Histological data reveal that a large number of pretectal cells in the superficial and central areas extend dendrites into the optic tract, suggesting a predominant retinal influence even outside of the normal retinal terminal areas. The pretectum receives inhibitory input from the basal ganglia, and input from the pallium (cortex in mammals) and torus semicircularis. In addition, the pretectum is reciprocally connected with the thalamus, tectum, octavolateral area, and habenula. The main pretectal output is to the reticulospinal nuclei, and thus the pretectum indirectly affects the control of movement. Efference copies of some of this output are relayed to the thalamus and tectum. Overall, its extensive circuitry-especially the reciprocal connectivity with other retinorecipient areas-underlines the importance of the pretectum for sensory integration and visuomotor functions. J. Comp. Neurol. 525:753-772, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Vias Neurais/citologia , Área Pré-Tectal/anatomia & histologia , Animais , Conectoma , Imuno-Histoquímica , Lampreias , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Área Pré-Tectal/fisiologia
8.
J Comp Neurol ; 522(16): 3733-53, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24889098

RESUMO

The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 µm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.


Assuntos
Mapeamento Encefálico , Núcleos Intralaminares do Tálamo/fisiologia , Camundongos/anatomia & histologia , Retina/anatomia & histologia , Vias Visuais/fisiologia , Animais , Toxina da Cólera/metabolismo , Lateralidade Funcional , Núcleos Intralaminares do Tálamo/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA