Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Genes Dev ; 31(13): 1289-1301, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808065

RESUMO

The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.


Assuntos
Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Animais , Cromatina/metabolismo , DNA/química , Motivos de Nucleotídeos/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética
2.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884664

RESUMO

The basic helix-loop-helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell's fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dimerização , Multimerização Proteica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/classificação , Humanos , Modelos Químicos , Estrutura Quaternária de Proteína
3.
J Biol Chem ; 290(34): 20723-20733, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26152719

RESUMO

One of the most fundamental questions in the control of gene expression in mammals is how the patterns of epigenetic modifications of DNA are generated, recognized, and erased. This includes covalent cytosine methylation of DNA and its associated oxidation states. An array of AdoMet-dependent methyltransferases, Fe(II)- and α-ketoglutarate-dependent dioxygenases, base excision glycosylases, and sequence-specific transcription factors is responsible for changing, maintaining, and interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases 5-methylcytosine and thymine (5-methyluracil).


Assuntos
5-Metilcitosina/metabolismo , DNA Glicosilases/metabolismo , Dioxigenases/metabolismo , Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Timina/metabolismo , Fatores de Transcrição/metabolismo , DNA Glicosilases/genética , Metilação de DNA , Reparo do DNA , Dioxigenases/química , Dioxigenases/genética , Epigênese Genética , Expressão Gênica , Humanos , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metiltransferases/genética , Modelos Moleculares , Oxirredução , Fatores de Transcrição/genética
4.
Genetics ; 212(1): 13-24, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31053615

RESUMO

Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in Drosophila The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function. They are composed of various combinations of sequence motifs such as the TATA box, initiator (Inr), and downstream core promoter element (DPE). Different types of core promoters are transcribed via distinct mechanisms. Moreover, some transcriptional enhancers exhibit specificity for particular types of core promoters. These findings indicate that the core promoter is a central component of the transcriptional apparatus that regulates gene expression.


Assuntos
Drosophila/genética , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Drosophila/enzimologia , Proteínas de Drosophila/metabolismo , Ativação Transcricional
5.
Open Access Bioinformatics ; 6(2014): 1-11, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25530700

RESUMO

BACKGROUND: Cell types are defined at the molecular level during embryogenesis by a process called pattern formation and created by the selective utilization of combinations of sequence specific transcription factors. Developmental programs define the sets of genes that are available to each particular cell type, and real-time biochemical signaling interactions define the extent to which these sets are used at any given time and place. Gene expression is regulated through the integrated action of many cis-regulatory elements, including core promoters, enhancers, silencers, and insulators. The chromatin state in developing body parts provides a code to cellular populations that direct their cell fates. Chromatin profiling has been a method of choice for mapping regulatory sequences in cells that go through developmental transitions. RESULTS: We used antibodies against histone H3 lysine 4 trimethylations (H3K4me3) a modification associated with promoters and open/active chromatin, histone H3 lysine 27 trimethylations (H3K27me3) associated with Polycomb-repressed regions and RNA polymerase II (Pol2) associated with transcriptional initiation to identify the chromatin state signature of the mouse forelimb during mid-gestation, at embryonic day 12 (E12). The families of genes marked included those related to transcriptional regulation and embryogenesis. One third of the marked genes were transcriptionally active while only a small fraction were bivalent marked. Sequence specific transcription factors that were activated were involved in cell specification including bone and muscle formation. CONCLUSION: Our results demonstrate that embryonic limb cells do not exhibit the plasticity of the ES cells but are rather programmed for a finer tuning for cell lineage specification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA