Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proteomics ; 22(13-14): e2100320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388624

RESUMO

Pancreatic cancer is a lethal malignancy and no screening biomarker or targeted therapy is currently available. Here, we performed a shotgun proteomic label-free quantification (LFQ) to define protein changes in the cellular proteome and secretome of four pancreatic cancer cell lines (PANC1, Paca44, Paca2, and BXPC3) versus normal human pancreatic ductal epithelial cells (HPDE). In the cellular proteome and secretome, 149 and 43 proteins were dysregulated in the most cancer cell lines, respectively. Using Ingenuity Pathway Analysis (IPA), the most dysregulated signaling pathways in pancreatic cancer cells included the activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular regulated kinase (ERK), and the deactivation of type-I interferon (IFN) pathways, which could promote cancer cell progression and decrease antitumor immunity. Parallel reaction monitoring (PRM) mass spectrometry was used to confirm the changes of seven regulated proteins quantified by LFQ: EGFR, growth/differentiation factor 15 (GDF15), protein-glutamine gamma-glutamyltransferase 2 (TGM2), leukemia inhibitory factor (LIF), interferon-induced GTP-binding protein Mx1 (MX1), signal transducer and activator of transcription 1 (STAT1), and serpin B5 (SERPINB5). Together, this proteomic analysis highlights protein changes associated with pancreatic cancer cells that should be further investigated as potential biomarkers or therapeutic targets.


Assuntos
Neoplasias Pancreáticas , Proteoma , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Interferons/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Secretoma , Neoplasias Pancreáticas
2.
Fungal Genet Biol ; 147: 103517, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434644

RESUMO

For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Fosfatos/metabolismo , Proteoma , Solo/química , Proteínas Fúngicas/genética , Nitrogênio/metabolismo , Fosfatos/análise , Raízes de Plantas/microbiologia , Proteômica , Simbiose/genética , Simbiose/fisiologia
3.
Environ Res ; 201: 111566, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181917

RESUMO

Cyanobacterial molecular biology can identify pathways that affect the adhesion and settlement of biofouling organisms and, consequently, obtain novel antifouling strategies for marine applications. Proteomic analyses can provide an essential understanding of how cyanobacteria adapt to different environmental settings. However, only a few qualitative studies have been performed in some cyanobacterial strains. Considering the limited knowledge about protein expression in cyanobacteria in different growing conditions, a quantitative proteomic analysis by LC-MS/MS of biofilm cells from a filamentous strain was performed. Biofilms were also analysed through standard methodologies for following cyanobacterial biofilm development. Biofilms were formed on glass and perspex at two relevant hydrodynamic conditions for marine environments (average shear rates of 4 s-1 and 40 s-1). Biofilm development was higher at 4 s-1 and no significant differences were found between surfaces. Proteomic analysis identified 546 proteins and 41 were differentially expressed. Differences in protein expression were more noticeable between biofilms formed on glass and perspex at 4 s-1. When comparing biofilms formed on different surfaces, results suggest that biofilm development may be related to the expression of several proteins like a beta-propeller domain-containing protein, chaperone DnaK, SLH domain-containing proteins, an OMF family outer membrane protein, and/or additional uncharacterized proteins. Regarding the hydrodynamic effect, biofilm development can be related to SOD enzyme expression, to proteins related to photosynthetic processes and to a set of uncharacterized proteins with calcium binding domains, disordered proteins, and others involved in electron transfer activity. Studies that combine distinct approaches are essential for finding new targets for antibiofilm agents. The characterisation performed in this work provides new insights into how shear rate and surface affect cyanobacterial biofilm development and how cyanobacteria adapt to these different environmental settings from a macroscopic standpoint to a proteomics context.


Assuntos
Cianobactérias , Proteômica , Biofilmes , Cromatografia Líquida , Espectrometria de Massas em Tandem
4.
Mar Drugs ; 16(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364843

RESUMO

Cnidarian toxic products, particularly peptide toxins, constitute a promising target for biomedicine research. Indeed, cnidarians are considered as the largest phylum of generally toxic animals. However, research on peptides and toxins of sea anemones is still limited. Moreover, most of the toxins from sea anemones have been discovered by classical purification approaches. Recently, high-throughput methodologies have been used for this purpose but in other Phyla. Hence, the present work was focused on the proteomic analyses of whole-body extract from the unexplored sea anemone Bunodactis verrucosa. The proteomic analyses applied were based on two methods: two-dimensional gel electrophoresis combined with MALDI-TOF/TOF and shotgun proteomic approach. In total, 413 proteins were identified, but only eight proteins were identified from gel-based analyses. Such proteins are mainly involved in basal metabolism and biosynthesis of antibiotics as the most relevant pathways. In addition, some putative toxins including metalloproteinases and neurotoxins were also identified. These findings reinforce the significance of the production of antimicrobial compounds and toxins by sea anemones, which play a significant role in defense and feeding. In general, the present study provides the first proteome map of the sea anemone B. verrucosa stablishing a reference for future studies in the discovery of new compounds.


Assuntos
Proteômica , Anêmonas-do-Mar/genética , Animais , Biologia Computacional , Ontologia Genética , Metaloproteases/biossíntese , Metaloproteases/química , Testes de Sensibilidade Microbiana , Neurotoxinas/biossíntese , Neurotoxinas/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Extratos de Tecidos/química
5.
J Proteome Res ; 15(4): 1179-93, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923066

RESUMO

The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.


Assuntos
Estruturas Animais/química , Proteínas de Insetos/isolamento & purificação , Proteômica , Seda/química , Aranhas/fisiologia , Sequência de Aminoácidos , Estruturas Animais/metabolismo , Estruturas Animais/ultraestrutura , Animais , Expressão Gênica , Ontologia Genética , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Conformação Molecular , Anotação de Sequência Molecular , Seda/metabolismo
6.
Biomolecules ; 14(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39199405

RESUMO

Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.


Assuntos
Biofilmes , Testes de Sensibilidade Microbiana , Cofator PQQ , Proteômica , Biofilmes/efeitos dos fármacos , Cofator PQQ/farmacologia , Cofator PQQ/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Simulação por Computador , Fungos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Antifúngicos/química
7.
Chemosphere ; 308(Pt 1): 136110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36007739

RESUMO

Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.


Assuntos
Linguados , Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Cálcio , Cromatografia Líquida , Citratos , Nanopartículas Metálicas/química , NADH Desidrogenase , Povidona/química , Proteômica , Prata/química , Espectrometria de Massas em Tandem , Hormônios Tireóideos , Titânio/química
8.
J Anim Sci Biotechnol ; 10: 94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827787

RESUMO

BACKGROUND: Ovarian follicular fluid influences follicle and oocyte growth, but the fluctuation of its protein content during folliculogenesis has not been comprehensively analyzed. Here we used a shotgun approach and bioinformatics analyses to investigate and compare the proteomes of porcine follicular fluid (pFF) obtained from small (< 4 mm), medium (4-6 mm) and large (> 6-12 mm) follicles. RESULTS: Follicular fluid samples containing highest estrogen levels were selected as non-atretic from small (SNA: 26.1 ± 15 ng/mL), medium (MNA: 162 ± 54 ng/mL), and large (LNA: 290 ± 37 ng/mL) follicles for proteomic analyses. We detected 1627, 1699, and 1756 proteins in SNA, MNA, and LNA samples, respectively. Nearly 60-63% of total proteins were specific to each sample, 11-13% were shared in pairwise comparisons, and 247 proteins were shared among all samples. Functional categorization indicated comparable gene ontology (GO) terms distribution per cellular component, molecular function, and biological process categories across samples; however, the ranking of highly significantly enriched GO terms per category revealed differences between samples. The patterns of protein-to-protein interactions varied throughout follicle development, and proteins such as serine protease inhibitor, clade E (SERPINE); plasminogen activator, urokinase (PLAU); and plasminogen activator, urokinase receptor (PLAUR) appeared stage-specific to SNA, MNA, and LNA, respectively. The "complement and coagulation cascades" was the common major pathway. Besides, properdin and fibulin-1 were abundant proteins that appeared absent in LNA samples. CONCLUSION: This study provides extensive and functional analyses of the pFF proteome changes during folliculogenesis and offers the potential for novel biomarker discovery in pFF for oocyte quality assessment.

9.
J Proteomics ; 204: 103396, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150779

RESUMO

Water temperature is an important environmental parameter influencing the distribution and the health of fishes and it plays a central role in ectothermic animals. The aim of this study is to determine the effects of environmental temperature on the brain proteome and the behavioural responses in zebrafish, a widely used animal model for environmental "omics" studies. Adult specimens of wild-type zebrafish were kept at 18 °C, 34 °C and 26 °C (control) for 21 days. Proteomic data revealed that several proteins involved in cytoskeletal organization, mitochondrial regulation and energy metabolism are differently regulated at the extreme temperatures. In particular, the expression of proteins associated to synapses and neurotransmitter release is down-regulated at 18 °C and 34 °C. In both thermal conditions, fish exhibited a reduced interest for the novel environment and an impairment of cognitive abilities during Y-Maze behavioural tests. The observed pathways of protein expression are possibly associated to functional alterations of the synaptic transmission that may result in cognitive functions impairment at central nervous system level as those revealed by behavioural tests. This study indicates that temperature variations can elicit biochemical changes that may affect fish health and behaviour. This combined approach provides insights into mechanisms supporting thermal acclimation and plasticity in fishes. SIGNIFICANCE: Environmental temperature variation may impact on all levels of biological life. Understanding the impact of thermal variation on the nervous system and animal behaviour is of primary importance since the results obtained can be applied from the ecological to the biomedical fields.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Cognição , Regulação da Expressão Gênica , Temperatura Alta , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Aprendizagem em Labirinto , Proteômica
10.
J Clin Lipidol ; 13(2): 317-325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745272

RESUMO

BACKGROUND: We previously reported that the patients with cholesteryl ester transfer protein (CETP) deficiency (CETP-D) show marked changes in the size and lipid compositions of high-density lipoprotein (HDL) and that they are not protected from atherosclerotic cardiovascular diseases, despite increased serum HDL-cholesterol (HDL-C) levels. HDL particles carry a variety of proteins, some of which are known to have antiatherogenic functions. OBJECTIVE: This study aimed to investigate the protein composition of HDL particles in patients with CETP-D. METHODS: Eight patients with complete deficiency of CETP and 8 normolipidemic healthy subjects were enrolled. We performed shotgun proteomic analysis to investigate the proteome of ultracentrifugally isolated HDL. RESULTS: We identified 79 HDL-associated proteins involved in lipid metabolism, protease inhibition, complement regulation, and acute-phase response, including 5 potential newly identified HDL-associated proteins such as angiopoietin-like3 (ANGPTL3). Spectral counts of apolipoprotein (apo) E were increased in patients with CETP-D compared with controls (60.3 ± 6.9 vs 43.7 ± 2.5, P < .001), which is concordant with our previous report. Complement regulatory proteins such as C3, C4a, C4b, and C9 were also significantly enriched in HDL from patients with CETP-D. Furthermore, apoC-III and ANGPTL3, both of which are now known to associate with increased atherosclerotic cardiovascular diseases, were enriched in patients with CETP-D compared with normolipidemic subjects (35.9 ± 5.3 vs 27.1 ± 3.7, 2.3 ± 1.1 vs 0.4 ± 1.1, respectively; P < .01). CONCLUSION: We have characterized HDL-associated proteins in patients with CETP-D. We identified a significant increase in the amount of apoE, apoC-III, ANGPTL3, and complement regulatory proteins. These proteomic changes might be partly responsible for the enhanced atherogenicity of patients with CETP-D.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/deficiência , Erros Inatos do Metabolismo Lipídico/metabolismo , Lipoproteínas HDL/metabolismo , Proteômica , Reação de Fase Aguda/complicações , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas do Sistema Complemento/metabolismo , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
11.
Front Microbiol ; 9: 1807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174657

RESUMO

Propionibacterium freudenreichii is a beneficial Gram-positive bacterium, traditionally used as a cheese-ripening starter, and currently considered as an emerging probiotic. As an example, the P. freudenreichii CIRM-BIA 129 strain recently revealed promising immunomodulatory properties. Its consumption accordingly exerts healing effects in different animal models of colitis, suggesting a potent role in the context of inflammatory bowel diseases. This anti-inflammatory effect depends on surface layer proteins (SLPs). SLPs may be involved in key functions in probiotics, such as persistence within the gut, adhesion to host cells and mucus, or immunomodulation. Several SLPs coexist in P. freudenreichii CIRM-BIA 129 and mediate immunomodulation and adhesion. A mutant P. freudenreichii CIRM-BIA 129ΔslpB (CB129ΔslpB) strain was shown to exhibit decreased adhesion to intestinal epithelial cells. In the present study, we thoroughly analyzed the impact of this mutation on cellular properties. Firstly, we investigated alterations of surface properties in CB129ΔslpB. Surface extractable proteins, surface charges (ζ-potential) and surface hydrophobicity were affected by the mutation. Whole-cell proteomics, using high definition mass spectrometry, identified 1,288 quantifiable proteins in the wild-type strain, i.e., 53% of the theoretical proteome predicted according to P. freudenreichii CIRM-BIA 129 genome sequence. In the mutant strain, we detected 1,252 proteins, including 1,227 proteins in common with the wild-type strain. Comparative quantitative analysis revealed 97 proteins with significant differences between wild-type and mutant strains. These proteins are involved in various cellular process like signaling, metabolism, and DNA repair and replication. Finally, in silico analysis predicted that slpB gene is not part of an operon, thus not affecting the downstream genes after gene knockout. This study, in accordance with the various roles attributed in the literature to SLPs, revealed a pleiotropic effect of a single slpB mutation, in the probiotic P. freudenreichii. This suggests that SlpB may be at a central node of cellular processes and confirms that both nature and amount of SLPs, which are highly variable within the P. freudenreichii species, determine the probiotic abilities of strains.

12.
Neurochem Int ; 103: 45-56, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28049027

RESUMO

Identification and validation of disease-relevant target proteins for natural products is an essential component of modern pharmaceutical research. In the present study, an integrated shotgun proteomics and bioinformatics approach was established to profile the interaction of active small molecules derived from ShengMai preparations (SMXZF) with hundreds of endogenously expressed proteins from middle cerebral artery occlusion (MCAO) model. Affinity-based proteomic strategies for isolation and identification of targets for the bioactive components is a classic, but still powerful approach. The proteins bound by SMXZF of the brain tissue proteins from MCAO model via serial affinity chromatograph were analyzed by nano liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) and all MS/MS spectra were then automatically searched by the SEQUEST program. A total of 154 proteins had been identified, with the molecular weight ranging from 21,369.6 to 332,393.21 and the pI from 4.32 to 10.88. Bioinformatic analysis was also implemented to better understand the identified proteins. In the gene ontology (GO) annotation, all the identified proteins were classified into 39, 18 and 12 groups according to biological process, cellular component and molecular function, respectively. KEGG pathways analysis of the identified proteins was conducted with 46 corresponding pathways found. In addition, the gene network was also constructed to analyze the relationship of these genes each other. Further validation of some targets were performed in MCAO model by Western blotting. The results indeed supported the notion that proteins MAPK/ERK1/2, CaMKII and VIM were involved in the disease development of MCAO and played an essential role in the protective effect of SMXZF. This study highlights the effectiveness and reliability of this integrated shotgun proteomics and bioinformatics approach, which is a promising paradigm for target identification and elucidating the mechanism of natural products in future research.


Assuntos
Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteômica , Animais , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Combinação de Medicamentos , Infarto da Artéria Cerebral Média/metabolismo , Ligantes , Masculino , Camundongos , Anotação de Sequência Molecular/métodos , Proteômica/métodos , Reprodutibilidade dos Testes
13.
Artigo em Inglês | MEDLINE | ID: mdl-28822866

RESUMO

In female mosquitoes, host-seeking and preference as well as several other important behaviors are largely driven by olfaction. Species of the Afrotropical Anopheles gambiae complex display divergent host-preference that are associated with significant differences in their vectorial capacity for human malaria. Olfactory sensitivity begins with signal transduction and activation of peripheral sensory neurons that populate the antennae, maxillary palps and other appendages. We have used shotgun proteomics to characterize the profile of soluble proteins of antennae and maxillary palps of three different species: An. coluzzii, An. arabiensis and An. quadriannulatus that display remarkable differences in anthropophilic behavior. This analysis revealed interspecific differences in the abundance of several proteins that comprise cuticular components, glutathione S-transferase and odorant binding proteins, the latter of which known to be directly involved in odor recognition.


Assuntos
Anopheles/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/análise , Proteoma/análise , Proteômica/métodos , Animais , Antenas de Artrópodes/química , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Solubilidade
14.
Anim Sci J ; 85(8): 814-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24961376

RESUMO

We investigated the proteome of a female Crested Ibis (Nipponia nippon, ID#162) that died on March 10, 2010 at the Sado Japanese Crested Ibis Conservation Center. Protein preparations from the brain, trachea, liver, heart, lung, proventriculus, muscular stomach, small intestine, duodenum, ovary and neck muscle were subjected to in-solution shotgun mass spectrometry (MS)/MS analyses using an LTQ Orbitrap XL mass spectrometer. A search of the National Center for Biotechnology Information Gallus gallus databases revealed 4253 GI (GenInfo Identifier) numbers with the sum of the same 11 tissues examined in the Crested Ibis. To interpret the obtained proteomics data, it was verified in detail with the data obtained from the brain of the Crested Ibis. It has been reported that drebrin A is specifically expressed in adult chicken brain. In the shotgun proteomic analyses of the Crested Ibis, we identified drebrin A as a brain-specific protein. Furthermore, Western blotting analysis of the protein preparations from 10 tissues of the Crested Ibis and 150-day-old hens using anti-drebrin antibodies showed intensive expression of approximately 110 kDa polypeptides of drebrin in both brains. We believe firmly that the present data will contribute to initial and fundamental steps toward understanding the Crested Ibis proteome.


Assuntos
Proteínas Aviárias/genética , Aves/genética , Proteoma/genética , Proteômica/métodos , Animais , Western Blotting , Encéfalo/metabolismo , Feminino , Japão , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Neuropeptídeos/metabolismo , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA