Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395305

RESUMO

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Complexo de Endopeptidases do Proteassoma , Doenças dos Suínos , Proteínas não Estruturais Virais , Animais , Acetilação , Alphacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Suínos , Ubiquitinas/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Células HEK293 , Células Vero , Humanos , Chlorocebus aethiops , Proteínas não Estruturais Virais/metabolismo
2.
J Allergy Clin Immunol ; 153(4): 1125-1139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072195

RESUMO

BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.


Assuntos
Mutação com Ganho de Função , Fator de Transcrição STAT1 , Células-Tronco , Humanos , Mutação , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismo
3.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063175

RESUMO

Type I interferon (IFN-I) signaling has been shown to be upregulated in systemic sclerosis (SSc). Dysregulated B-cell functions, including antigen presentation, as well as antibody and cytokine production, all of which may be affected by IFN-I signaling, play an important role in the pathogenesis of the disease. We investigated the IFN-I signature in 71 patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and 33 healthy controls (HCs). Activation via Toll-like receptors (TLRs) can influence the IFN-I signaling cascade; thus, we analyzed the effects of the TLR homologue CD180 ligation on the IFN-I signature in B cells. CD180 stimulation augmented the phosphorylation of signal transducer and activator of transcription 1 (STAT1) in dcSSc B cells (p = 0.0123). The expression of IFN-I receptor (IFNAR1) in non-switched memory B cells producing natural autoantibodies was elevated in dcSSc (p = 0.0109), which was enhanced following anti-CD180 antibody treatment (p = 0.0125). Autoantibodies to IFN-Is (IFN-alpha and omega) correlated (dcSSc p = 0.0003, HC p = 0.0192) and were present at similar levels in B cells from dcSSc and HC, suggesting their regulatory role as natural autoantibodies. It can be concluded that factors other than IFN-alpha may contribute to the elevated IFN-I signature of dcSSc B cells, and one possible candidate is B-cell activation via CD180.


Assuntos
Antígenos CD , Autoanticorpos , Linfócitos B , Interferon Tipo I , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Pessoa de Meia-Idade , Feminino , Masculino , Autoanticorpos/imunologia , Antígenos CD/metabolismo , Adulto , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Esclerodermia Difusa/imunologia , Esclerodermia Difusa/metabolismo , Idoso , Regulação para Cima , Transdução de Sinais
4.
J Biol Chem ; 298(7): 102065, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618021

RESUMO

Long noncoding RNAs (lncRNAs) are important tissue-specific regulators of gene expression, and their dysregulation can induce aberrant gene expression leading to various pathological conditions, including cancer. Although many lncRNAs have been discovered by computational analysis, most of these are as yet unannotated. Herein, we describe the nature and function of a novel lncRNA detected downstream of the human parathyroid hormone (PTH) gene in both extremely rare ectopic PTH-producing retroperitoneal malignant fibrous histiocytoma and parathyroid tumors with PTH overproduction. This novel lncRNA, which we have named "PTH-AS," has never been registered in a public database, and here, we investigated for the first time its exact locus, length, transcription direction, polyadenylation, and nuclear localization. Microarray and Gene Ontology analyses demonstrated that forced expression of PTH-AS in PTH-nonexpressing human breast cancer T47D cells did not induce the ectopic expression of the nearby PTH gene but did significantly upregulate Janus kinase-signal transducer and activator of transcription pathway-related genes such as cancer-promoting interferon-related DNA damage resistance signature (IRDS) genes. Importantly, we show that PTH-AS expression not only enhanced T47D cell invasion and resistance to the DNA-damaging drug doxorubicin but also promoted lung metastasis rather than tumor growth in a mouse xenograft model. In addition, PTH-AS-expressing T47D tumors showed increased macrophage infiltration that promoted angiogenesis, similar to IRDS-associated cancer characteristics. Although the detailed molecular mechanism remains imperfectly understood, we conclude that PTH-AS may contribute to tumor development, possibly through IRDS gene upregulation.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Interferons/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Cancer Sci ; 114(11): 4445-4458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37681349

RESUMO

Sperm-associated antigen 6 (SPAG6) has been identified as an oncogene or tumor suppressor in various types of human cancer. However, the role of SPAG6 in BCR::ABL1 negative myeloproliferative neoplasms (MPNs) remains unclear. Herein, we found that SPAG6 was upregulated at the mRNA level in primary MPN cells and MPN-derived leukemia cell lines. The SPAG6 protein was primarily located in the cytoplasm around the nucleus and positively correlated with ß-tubulin expression. In vitro, forced expression of SPAG6 increased cell clone formation and promoted G1 to S cell cycle progression. Downregulation of SPAG6 promoted apoptosis, reduced G1 to S phase transition, and impaired cell proliferation and cytokine release accompanied by downregulated signal transducer and activator of transcription 1 (STAT1) expression. Furthermore, the inhibitory effect of interferon-α (INF-α) on the primary MPN cells with high SPAG6 expression was decreased. Downregulation of SPAG6 enhanced STAT1 induction, thus enhancing the proapoptotic and cell cycle arrest effects of INF-α both in vitro and in vivo. Finally, a decrease in SPAG6 protein expression was noted when the STAT1 signaling was blocked. Chromatin immunoprecipitation assays indicated that STAT1 protein could bind to the SPAG6 promoter, while the dual-luciferase reporter assay indicated that STAT1 could promote the expression of SPAG6. Our results substantiate the relationship between upregulated SPAG6, increased STAT1, and reduced sensitivity to INF-α response in MPN.


Assuntos
Interferon-alfa , Neoplasias , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/genética , Proteínas/metabolismo , Transdução de Sinais/genética , Genes Supressores de Tumor , Regiões Promotoras Genéticas , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Neoplasias/genética , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo
6.
Mycopathologia ; 188(1-2): 87-97, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36335528

RESUMO

OBJECTIVE: To further elucidate the clinical, immunological and genetic features of chronic mucocutaneous candidiasis (CMC) due to STAT1 GOF mutation in the Chinese population. METHODS: Clinical data for a proband were collected, and pedigree analyses were performed. Whole-exome sequencing and targeted Sanger sequencing were conducted to explore genetic factors of a Chinese pedigree involving inherited CMC. RESULTS: An autosomal dominant CMC pedigree was identified, and both the proband and his father had mucocutaneous Candida infections without involvement of other systems. A rare mutation (c.T1175C) in STAT1 was detected in this CMC pedigree. Multiple sequence alignment revealed that the amino acid position of this mutation (p.M392T) is evolutionarily conserved in vertebrate species. Serum IFN-α was elevated in patients harbouring the mutation. A total of 10 publications reporting 26 CMC patients with STAT1 GOF mutations were retrieved by literature review, and the most common mutation found in previously reported Chinese patients is T385M in the DNA-binding domain. CONCLUSIONS: STAT1 GOF mutation at c.T1175C (p.M392T) may lead to mucocutaneous Candida infections and an increase in serum IFN-α. T385M in the DNA-binding domain is the most common STAT1 GOF mutation found in the Chinese population.


Assuntos
Candidíase Mucocutânea Crônica , Humanos , Candidíase Mucocutânea Crônica/genética , DNA , População do Leste Asiático , Mutação com Ganho de Função , Interferon-alfa , Mutação , Linhagem , Fator de Transcrição STAT1/genética
7.
J Neurophysiol ; 128(1): 253-262, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642851

RESUMO

Intracerebral hemorrhage (ICH) is classified as a subtype of stroke and calcium (Ca2+) overload is a catalyst for ICH. This study explored the mechanisms of Stat1 (signal transducer and activator of transcription 1) in the neuronal Ca2+ overload after ICH. ICH mouse models and in vitro cell models were established. Stat1 and transient receptor potential melastatin 7 (Trpm7) were detected upregulated in ICH models. Afterward, the mice were infected with the lentivirus containing sh-Stat1, and HT22 cells were treated with si-Stat1 and the lentivirus containing pcDNA3.1-Trpm7. The neurological functional impairment, histopathological damage, and Nissl bodies in mice were all measured. HT22 cell viability and apoptosis were identified. The levels of Ca2+, Trpm7 mRNA, H3K27 acetylation (H3K27ac), CaMKII-α, and p-Stat1 protein in the tissues and cells were determined. We found that silencing Stat1 alleviated ICH damage and repressed the neuronal Ca2+ overload after ICH. H3K27ac enrichment in the Trpm7 promoter region was examined and we found that p-Stat1 accelerated Trpm7 transcription via promoting H3K27ac in the Trpm7 promoter region. Besides, Trpm7 overexpression increased Ca2+ overload and aggravated ICH. Overall, p-Stat1 promoted Trpm7 transcription and further aggravated the Ca2+ overload after ICH.NEW & NOTEWORTHY We found Stat1 promotes Trpm7 transcription by promoting H3K27 acetylation and thus promotes calcium overload of neurons after intracerebral hemorrhage.


Assuntos
Cálcio , Hemorragia Cerebral , Fator de Transcrição STAT1 , Canais de Cátion TRPM , Acetilação , Animais , Cálcio/metabolismo , Histonas/metabolismo , Camundongos , Neurônios/metabolismo , Fator de Transcrição STAT1/metabolismo , Canais de Cátion TRPM/metabolismo
8.
FASEB J ; 35(10): e21892, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569651

RESUMO

Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.


Assuntos
Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Fator de Transcrição STAT1/metabolismo , Animais , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosforilação , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/metabolismo , Fator de Transcrição STAT1/genética
9.
Inflamm Res ; 71(9): 1079-1094, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35913585

RESUMO

BACKGROUND: The development of inflammatory bowel diseases is thought to be multifactorial, but the exact steps in pathogenesis are poorly understood. In this study, we investigated involvement of the activation of STAT1 signal pathway in the pathogenesis of an acute colitis model. METHODS: A dextran sulfate sodium-induced acute colitis model was established by using wild-type C57BL/6 mice and STAT1-deficient mice. Disease indicators such as body weight loss and clinical score, induction of cytokines, chemokines, and inflammatory cells were evaluated in the acute colitis model. RESULTS: Disease state was significantly improved in the acute colitis model using STAT1-deficient mice compared with wild-type mice. The induction of Ly6c-highly expressing cells in colorectal tissues was attenuated in STAT1-deficient mice. IL-6, CCL2, and CCR2 gene expressions in Ly6c-highly expressing cells accumulated in the inflamed colon tissues and were significantly higher than in Ly6c-intermediate-expressing cells, whereas TNF-α and IFN-α/ß gene expression was higher in Ly6c-intermediate-expressing cells. Blockade of CCR2-mediated signaling significantly reduced the disease state in the acute colitis model. CONCLUSIONS: Two different types of Ly6c-expressing macrophages are induced in the inflamed tissues through the IFN-α/ß-STAT1-mediated CCL2/CCR2 cascade and this is associated with the pathogenesis such as onset, exacerbation, and subsequent chronicity of acute colitis.


Assuntos
Antígenos Ly , Colite , Animais , Antígenos Ly/genética , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Sulfato de Dextrana/efeitos adversos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
10.
Biol Pharm Bull ; 45(3): 301-308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228396

RESUMO

Neuroinflammation induced by activated microglia is a key feature of neurodegenerative diseases such as Alzheimer's disease. The natural flavonoid 3',4',7-trihydroxyflavone protects nerve cells from oxidative stress-mediated apoptosis and inhibits the aggregation of amyloid ß protein in vitro. However, little is known about its effects on microglial activation. In this study, we investigated the effects of 3',4',7-trihydroxyflavone on lipopolysaccharide (LPS)- or interferon-γ (IFN-γ)-induced neuroinflammatory responses in MG6 microglial cells. 3',4',7-Trihydroxyflavone inhibited LPS- or IFN-γ-mediated nitric oxide (NO) generation and the upregulation of inducible NO synthase (iNOS) in MG6 cells. 3',4',7-Trihydroxyflavone also suppressed LPS- or IFN-γ-mediated phosphorylation of signal transducer and activator of transcription 1 (STAT1), which is crucial for iNOS expression. LPS stimulation induced rapid phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK) in MG6 cells. 3',4',7-Trihydroxyflavone significantly inhibited the LPS-mediated phosphorylation of JNK, but not that of ERK and p38 MAPK. The inhibitory effect of 3',4',7-trihydroxyflavone on NO generation was mimicked by pharmacological inhibition of the JNK signaling pathway with SP600125. Furthermore, SP600125 significantly inhibited LPS- or IFN-γ-mediated phosphorylation of STAT1 in MG6 cells. These results suggest that 3',4',7-trihydroxyflavone exerts anti-neuroinflammatory effects via inhibition of the JNK-STAT1 pathway in microglia.


Assuntos
Lipopolissacarídeos , Microglia , Peptídeos beta-Amiloides/metabolismo , Flavonoides , Interferon gama/metabolismo , Interferon gama/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação
11.
J Clin Lab Anal ; 36(1): e24019, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825733

RESUMO

BACKGROUND: Atherosclerosis (AS) is the main cause of cerebrovascular diseases, and macrophages act important roles during the AS pathological process through regulating inflammation. Modification of the novel N(6)-methyladenine (m6A) RNA is reported to be associated with AS, but its role in AS is largely unknown. The aim of this study was to investigate the role and mechanism of m6A modification in inflammation triggered by oxidized low-density lipoprotein (oxLDL) in macrophages during AS. METHODS: RAW264.7 macrophage cells were stimulated with 40 µg/ml ox-LDL, Dot blot, Immunoprecipitation, western blot, Rip and chip experiments were used in our study. RESULTS: We found oxLDL stimulation significantly promoted m6A modification level of mRNA in macrophages and knockdown of Methyltransferase-Like Protein 3 (Mettl3) inhibited oxLDL-induced m6A modification and inflammatory response. Mettl3 promoted oxLDL-induced inflammatory response in macrophages through regulating m6A modification of Signal transducer and activator of transcription 1 (STAT1) mRNA, thereby affecting STAT1 expression and activation. Moreover, oxLDL stimulation enhanced the interaction between Mettl3 and STAT1 protein, promoting STAT1 transcriptional regulation of inflammatory factor expression in macrophages eventually. CONCLUSIONS: These results indicate that Mettl3 promotes oxLDL-triggered inflammation through interacting with STAT1 protein and mRNA in RAW264.7 macrophages, suggesting that Mettl3 may be as a potential target for the clinical treatment of AS.


Assuntos
Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Metiltransferases/metabolismo , Fator de Transcrição STAT1/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Aterosclerose/metabolismo , Humanos , Lipoproteínas LDL/farmacologia , Macrófagos/citologia , Camundongos , Células RAW 264.7 , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
IUBMB Life ; 73(1): 238-251, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331071

RESUMO

Atherosclerosis (AS) is the main cause of coronary heart disease, in which enhancer of zeste homolog 2 (EZH2) has been implied to participate in this process. Thus, this work proposed to explore the effect of EZH2 on AS from microRNA-139-5p (miR-139-5p)/signal transducer and activator of transcription 1 (STAT1) axis. EZH2, miR-139-5p, and STAT1 expression in arterial tissues of AS patients were detected. Human arterial smooth muscle cells (HASMCs) induced with oxidized low-density lipoprotein (ox-LDL) and the mice fed with high fat diet were treated with silenced EZH2 or upregulated miR-139-5p to explore their roles in proliferation and apoptosis of HASMCs, together with inflammation response and oxidative stress of mice. Chromatin immunoprecipitation experiment was applied to verify the regulatory effect of EZH2 on miR-139-5p through methylation of H3K27me3. The targeting relationship between miR-139-5p and STAT1 was verified by online website and luciferase activity assay. Reduced miR-139-5p and overexpressed EHZ2 and STAT1 were found in AS. Silenced EZH2 or elevated miR-139-5p decreased the production of cholesterol and inhibited inflammation reaction in serum of mice with AS. Silenced EZH2 or elevated miR-139-5p facilitated proliferation and restrained apoptosis of ox-LDL-treated HASMCs, and restrained oxidative stress and cell apoptosis in arterial tissues of AS mice. EZH2 regulated miR-139-5p through H3K27me3, and miR-139-5p targeted STAT1. miR-139-5p silencing antagonized the effects of EZH2 down-regulation on AS. This study manifests that down-regulated EZH2 or elevated miR-139-5p inhibits ox-LDL-induced HASMCs apoptosis, plaque formation, and inflammatory response in AS mice, which may be related to down-regulated STAT1.


Assuntos
Aterosclerose/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição STAT1/metabolismo , Animais , Apoptose , Aterosclerose/genética , Aterosclerose/metabolismo , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fator de Transcrição STAT1/genética
13.
Virol J ; 17(1): 187, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239033

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants, children, immunocompromised adults, and elderly individuals. Currently, there are few therapeutic options available to prevent RSV infection. The present study aimed to investigate the effects of luteolin on RSV replication and the related mechanisms. MATERIAL AND METHODS: We pretreated cells and mice with luteolin before infection with RSV, the virus titer, expressions of RSV-F, interferon (IFN)-stimulated genes (ISGs), and production of IFN-α and IFN-ß were determined by plaque assay, RT-qPCR, and ELISA, respectively. The activation of Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling pathway was detected by Western blotting and luciferase assay. Proteins which negatively regulate STAT1 were determined by Western blotting. Then cells were transfected with suppressor of cytokine signaling 1 (SOCS1) plasmid and virus replication and ISGs expression were determined. Luciferase reporter assay and Western blotting were performed to detect the relationship between SOCS1 and miR-155. RESULTS: Luteolin inhibited RSV replication, as shown by the decreased viral titer and RSV-F mRNA expression both in vitro and in vivo. The antiviral activity of luteolin was attributed to the enhanced phosphorylation of STAT1, resulting in the increased production of ISGs. Further study showed that SOCS1 was downregulated by luteolin and SOCS1 is a direct target of microRNA-155 (miR-155). Inhibition of miR-155 rescued luteolin-mediated SOCS1 downregulation, whereas upregulation of miR-155 enhanced the inhibitory effect of luteolin. CONCLUSION: Luteolin inhibits RSV replication by regulating the miR-155/SOCS1/STAT1 signaling pathway.


Assuntos
Antivirais/farmacologia , Luteolina/farmacologia , MicroRNAs/antagonistas & inibidores , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Fator de Transcrição STAT1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Regulação para Baixo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Fator de Transcrição STAT1/genética , Proteína 1 Supressora da Sinalização de Citocina/antagonistas & inibidores
14.
Hepatol Res ; 50(3): 292-302, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733138

RESUMO

AIM: A complete cure for chronic hepatitis B virus (HBV) infection requires elimination of covalently closed circular DNA; however, this remains to be clinically achieved. Interferon (IFN)-γ, a type II IFN, is produced by intrahepatic cytotoxic T lymphocytes and has non-cytolytic antiviral potential. However, the mechanism by which IFN-γ regulates HBV infection has not been fully elucidated. Thus, we developed an in vitro HBV infection assay system and analyzed the molecular signature of HBV regulation by IFN-γ. METHODS: The in vitro HBV infection assay system was established in primary human hepatocytes infected with HBV derived from the plasmid containing 1.3-mer HBV genome, and treated with IFN-γ. The antiviral effects and signaling pathways of IFN-γ were examined using microarray, and assessed by siRNA knockdown experiments of the related genes. RESULTS: IFN-γ treatment suppressed both HBV propagation and transcription as efficiently as IFN-α. Microarray analysis showed that IFN-γ stimulation induced the activation of both IFN-γ and IFN-α signaling, regulating HBV covalently closed circular DNA. HBV production was decreased by IFN-γ through Janus kinase/signal transducer and activator of transcription signaling and interferon-stimulated genes, such as 2'-5'-oligoadenylate synthase 2 and apolipoprotein B mRNA editing enzyme catalytic subunit 3G. CONCLUSIONS: IFN-γ can suppress HBV propagation and transcription in hepatocytes by activating specific intracellular signaling pathways in hepatocytes, and suggests the future application of these particular signaling pathways or genes for the complete elimination of HBV.

15.
J Allergy Clin Immunol ; 143(3): 1108-1118.e4, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30030006

RESUMO

BACKGROUND: Patients with loss-of-function (LOF) signal transducer and activator of transcription 3 (STAT3) mutations have dermatitis, enhanced IgE production despite a relative lack of immediate hypersensitivity, recurrent infection, and an increased rate of lymphoma in addition to a number of skeletal and connective tissue abnormalities. Patients with STAT1 gain-of-function (GOF) mutations also have susceptibility to candidiasis and sinopulmonary infection, as well as autoimmunity and squamous cell carcinoma, in addition to even more broad phenotypes. OBJECTIVE: Because of the link between TH9 cells and allergic inflammation, autoimmunity, and antitumor surveillance and because evidence shows a role for either STAT3 or STAT1 in TH9 differentiation conflicts, we sought to determine the status on this lineage of STAT1 GOF and STAT3 LOF mutations in human subjects. METHODS: We detected IL-9 levels and TH9 differentiation in patients with STAT3 LOF and STAT1 GOF mutations, together with TH9 transcript factors, and partially rescued their deficiency in vitro by adding cytokines they lacked or transfecting key molecules. RESULTS: We found that PBMCs or sorted naive CD4+ T cells from patients with STAT3 LOF and STAT1 GOF mutations had impaired TH9 generation/differentiation. STAT3 inhibition in normal TH9 cultures diminished early IL-21 induction and late IL-9 production, whereas exogenous IL-21 enhanced TH9 differentiation, even with STAT3 inhibition, by restoring suppressor of cytokine signaling 3 expression and thus inhibiting excessive phosphorylated signal transducer and activator of transcription (p-STAT) 1 activation. Furthermore, exogenous expression of suppressor of cytokine signaling 3 or either T-bet or STAT1 RNA interference in STAT3 LOF cells partially rescued IL-9 differentiation. CONCLUSION: Collectively, these results suggest that human TH9 differentiation depends on normal p-STAT3 and IL-21 production to suppress p-STAT1 activation and T-bet transcription.


Assuntos
Interleucinas/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Diferenciação Celular , Humanos , Mutação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Linfócitos T Auxiliares-Indutores/fisiologia
16.
S Afr J Bot ; 135: 240-251, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32963416

RESUMO

Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.

17.
J Cell Biochem ; 120(8): 13226-13236, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30887575

RESUMO

Myocardial infarction (MI) remains a severe cardiac disease because of its high incidence and mortality worldwide. A growing body of recent investigations have confirmed that LINC00961 acts as a tumor suppressor in diverse malignancies. However, the biological significance of LINC00961 and its molecular mechanism in MI are still elusive. Hypoxia is the leading cause of MI and induces myocardial injury. In this study, we found the upregulated expression of LINC00961 in cardiomyocytes H9c2 after hypoxia treatment. Knockdown of LINC00961 ameliorated hypoxia-induced cell injury by facilitating cell viability while repressing cell apoptosis. The significant increase of signal transducer and activator of transcription 1 (STAT1) expression and phosphorylation levels was observed in hypoxia-induced cells and proved to exacerbate hypoxia injury. In addition, STAT1 transcriptionally activated LINC00961 by binding to LINC00961 promoter. Furthermore, our results validated that suppressing LINC00961 contributed to the remarkable diminution in the phosphorylation levels of phosphoinositide 3-kinases (PI3K), AKT, and glycogen synthase kinase-3ß (GSK3ß). Inhibition of PI3K/AKT signaling or GSK3ß pathway rescued the effects of LINC00961 knockdown on the hypoxia-induced injury of cardiomyocytes. Namely, we concluded that STAT1-avtiviated LINC00961 accelerated MI via the PI3K/AKT/GSK3ß pathway, which may provide clues for the treatment of patients with MI.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Infarto do Miocárdio/metabolismo , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT1/metabolismo , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Infarto do Miocárdio/genética , Peptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
J Biochem Mol Toxicol ; 33(4): e22265, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30506661

RESUMO

Steroid-induced avascular necrosis of the femoral head (SANFH) is mainly induced by glucocorticoids. Fludarabine (Flu) is a specific signal transducer and activator of transcription 1 (STAT1) inhibitor. In this study, we investigated the effect of Flu on SANFH and the role played by the STAT1/caspase-3 signaling pathway. Sprague-Dawley rats were divided into control, SANFH, and Flu-treated SANFH groups. Femoral head tissues were collected for hematoxylin-eosin (H&E) staining and Western blot analysis. The latter was used to measure the levels of stat1, phospho-stat1, caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, Bax, cytochrome C, Bak, B-cell lymphoma-extra large, and B-cell lymphoma-2 protein expression. The results showed that Flu regulates protein expression in dexamethasone (Dex)-induced SANFH. H&E staining showed a decrease in the ratio of empty lacunae induced by Dex. Taken together, our study demonstrated the involvement of the STAT1/caspase-3 signaling pathway in SANFH and the potential of Flu as a therapeutic agent for patients with SANFH.


Assuntos
Caspase 3/metabolismo , Dexametasona/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/patologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vidarabina/análogos & derivados , Animais , Modelos Animais de Doenças , Progressão da Doença , Cabeça do Fêmur/enzimologia , Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/tratamento farmacológico , Masculino , Ratos Sprague-Dawley , Vidarabina/farmacologia , Vidarabina/uso terapêutico
19.
J Allergy Clin Immunol ; 141(5): 1844-1853.e2, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28859974

RESUMO

BACKGROUND: Sumoylation is a posttranslational reversible modification of cellular proteins through the conjugation of small ubiquitin-related modifier (SUMO) and comprises an important regulator of protein function. OBJECTIVE: We sought to characterize the molecular mechanism of a novel mutation at the SUMO motif on signal transducer and activator of transcription 1 (STAT1). METHODS: STAT1 sequencing and functional characterization were performed in transfection experiments by using immunoblotting and immunoprecipitation in STAT1-deficient cell lines. Transcriptional response and target gene activation were also investigated in PBMCs. RESULTS: We identified a novel STAT1 mutation (c.2114A>T, p.E705V) within the SUMO motif (702IKTE705) in a patient with disseminated Rhodococcus species infection, Norwegian scabies, chronic mucocutaneous candidiasis, hypothyroidism, and esophageal squamous cell carcinoma. The mutation is located in the tail segment and is predicted to disrupt STAT1 sumoylation. Immunoprecipitation experiments performed in transfected cells confirmed absent STAT1 sumoylation for E705V, whereas it was present in wild-type (WT) STAT1 cells, as well as the loss-of-function mutants L706S and Y701C. Furthermore, stimulation with IFN-γ led to enhanced STAT1 phosphorylation, enhanced transcriptional activity, and target gene expression in the E705V-transfected compared with WT-transfected cells. Computer modeling of WT and mutant STAT1 molecules showed variations in the accessibility of the phosphorylation site Y701, which corresponded to the loss-of-function and gain-of-function variants. CONCLUSION: This is the first report of a mutation in the STAT1 sumoylation motif associated with clinical disease. These data reinforce sumoylation as a key posttranslational regulatory modification of STAT1 and identify a novel mechanism for gain-of-function STAT1 disease in human subjects.


Assuntos
Mutação com Ganho de Função/imunologia , Mutação/genética , Fator de Transcrição STAT1/genética , Ubiquitina/genética , Animais , Células COS , Candidíase Mucocutânea Crônica/genética , Linhagem Celular , Chlorocebus aethiops , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Expressão Gênica/genética , Humanos , Fosforilação/genética , Proteína SUMO-1/genética , Sumoilação/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Transfecção/métodos
20.
J Allergy Clin Immunol ; 141(6): 2142-2155.e5, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29111217

RESUMO

BACKGROUND: Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility. OBJECTIVE: We sought to investigate NK cell function in patients with STAT1 GOF mutations. METHODS: NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib. RESULTS: Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function. CONCLUSIONS: Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.


Assuntos
Síndromes de Imunodeficiência/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Pirazóis/farmacologia , Fator de Transcrição STAT1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Mutação com Ganho de Função , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/genética , Janus Quinases/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Masculino , Nitrilas , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA