Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 78(4): 1263-1273, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33052434

RESUMO

In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemical and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/genética , Humanos , Peso Molecular , Neoplasias/patologia , Fosforilação/genética , Transdução de Sinais/genética
2.
Cell Rep ; 42(7): 112729, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405922

RESUMO

Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.


Assuntos
Plantas , Transdução de Sinais , Fosforilação/fisiologia , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo
3.
Front Oncol ; 12: 922025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875157

RESUMO

Systematic analysis of tumor transcriptomes, combined with deep genome sequencing and detailed clinical assessment of hundreds of patients, constitutes a powerful strategy aimed to identify potential biomarkers and therapeutic targets to guide personalized treatments. Oncogenic signaling cascades are integrated by multidomain effector proteins such as P-Rex1, a guanine nucleotide exchange factor for the Rac GTPase (RacGEF), known to promote metastatic dissemination of cancer cells. We hypothesized that patients with high P-Rex1 expression and reduced survival might be characterized by a particular set of signaling proteins co-expressed with this effector of cell migration as a central component of a putative signaling hub indicative of poor prognosis. High P-Rex1 expression correlated with reduced survival of TCGA Lower Grade Glioma (LGG) patients. Thus, guided by PREX1 expression, we searched for signaling partners of this RacGEF by applying a systematic unbiased in silico data mining strategy. We identified 30 putative signaling partners that also correlated with reduced patient survival. These included GPCRs such as CXCR3, GPR82, FZD6, as well as MAP3K1, MAP2K3, NEK8, DYRK3 and RPS6KA3 kinases, and PTPN2 and PTPN22 phosphatases, among other transcripts of signaling proteins and phospho-substrates. This PREX1 signaling hub signature correlated with increased risk of shorter survival of LGG patients from independent datasets and coincided with immune and endothelial transcriptomic signatures, indicating that myeloid infiltration and tumor angiogenesis might contribute to worsen brain tumor pathology. In conclusion, P-Rex1 and its putative signaling partners in LGG are indicative of a signaling landscape of the tumor microenvironment that correlates with poor prognosis and might guide the characterization of signaling targets leading the eventual development of immunotherapeutic strategies.

4.
J Fungi (Basel) ; 7(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206073

RESUMO

The striatin-interacting phosphatases and kinases (STRIPAK) multi subunit complex is a highly conserved signaling complex that controls diverse developmental processes in higher and lower eukaryotes. In this perspective article, we summarize how STRIPAK controls diverse developmental processes in euascomycetes, such as fruiting body formation, cell fusion, sexual and vegetative development, pathogenicity, symbiosis, as well as secondary metabolism. Recent structural investigations revealed information about the assembly and stoichiometry of the complex enabling it to act as a signaling hub. Multiple organellar targeting of STRIPAK subunits suggests how this complex connects several signaling transduction pathways involved in diverse cellular developmental processes. Furthermore, recent phosphoproteomic analysis shows that STRIPAK controls the dephosphorylation of subunits from several signaling complexes. We also refer to recent findings in yeast, where the STRIPAK homologue connects conserved signaling pathways, and based on this we suggest how so far non-characterized proteins may functions as receptors connecting mitophagy with the STRIPAK signaling complex. Such lines of investigation should contribute to the overall mechanistic understanding of how STRIPAK controls development in euascomycetes and beyond.

5.
Trends Plant Sci ; 26(12): 1286-1300, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34417080

RESUMO

Glycogen synthase kinase 3 (GSK3) family members are highly conserved serine/threonine protein kinases in eukaryotes. Unlike animals, plants have evolved with multiple homologs of GSK3s involved in a diverse array of biological processes. Emerging evidence suggests that GSK3s act as signaling hubs for integrating perception and transduction of diverse signals required for plant development and responses to abiotic and biotic cues. Here we review recent advances in understanding the molecular interactions between GSK3s and an expanding spectrum of their upstream regulators and downstream substrates in plants. We further discuss how GSK3s act as key signaling nodes of multilayer regulation of plant development and stress response through either being regulated at the post-translational level or regulating their substrates via phosphorylation.


Assuntos
Fenômenos Biológicos , Quinase 3 da Glicogênio Sintase , Animais , Quinase 3 da Glicogênio Sintase/genética , Desenvolvimento Vegetal , Proteínas Serina-Treonina Quinases , Transdução de Sinais
6.
Adv Biol Regul ; 57: 217-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25497594

RESUMO

IP3 receptor (IP3R) was found to release Ca(2+) from non-mitochondrial store but the exact localization and the mode of action of IP3 remained a mystery. IP3R was identified to be P400 protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca(2+) spikes in Pukinje cells. IP3R was an IP3 binding protein and was a Ca(2+) channel localized on the endoplasmic reticulum. Full-length cDNA of IP3R type 1 was initially cloned and later two other isoforms of IP3R (IP3R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP3R, the dysregulation of IP3 receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP3 was found not only to release Ca(2+), but also to release IRBIT (IP3receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.


Assuntos
Ataxia , Sinalização do Cálcio/genética , Cardiopatias , Receptores de Inositol 1,4,5-Trifosfato , Doenças Neurodegenerativas , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Percepção Gustatória/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA