Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(4): 434-449, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017290

RESUMO

Despite significant advancements in tissue engineering and regenerative medicine during the last two decades, the fabrication of proper scaffolds with appropriate cells can still be considered a critical achievement in this field. Hypoxia is a major stumbling block to chronic wound healing, which restrains tissue engineering plans because a lack of oxygen may cause cell death. This study evaluated the cocultured human keratinocytes and human adipose-derived mesenchymal stem cells (AMSCs) on a multilayer oxygen-releasing electrospun scaffold based on PU/PCL.Sodium percarbonate (SPC)-gelatin/PU. The scaffold was characterized using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) methods. Flow cytometry confirmed mesenchymal stem cells, and then the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and DAPI staining were used to assess the in vitro biocompatibility of the scaffold. The experimental results showed that the multilayer electrospun scaffold containing 2.5% SPC could efficiently produce oxygen. Furthermore, according to cell viability results, this structure makes a suitable substrate for the coculture of keratinocytes and AMSCs. Gene expression analysis of various markers such as Involucrin, Cytokeratin 10, and Cytokeratin 14 after 14 days confirmed that keratinocytes and AMSCs coculture on PU/PCL.SPC-gelatin/PU electrospun scaffold promotes dermal differentiation and epithelial proliferation compared to keratinocytes single-cell culture. Therefore, our study supports using oxygen-releasing scaffolds as a potential strategy to hasten skin tissue regeneration. Based on the results, this structure is suggested as a promising candidate for cell-based skin tissue engineering. Given that the developed oxygen-generating polymeric electrospun scaffolds could be used as part of a future strategy for skin tissue engineering, the PU/PCL.SPC-gelatin/PU hybrid electrospun multilayer scaffold in combination with keratinocyte/AMSC coculture is proposed as an effective substrate for skin tissue engineering and regenerative medicine platforms.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Masculino , Humanos , Técnicas de Cocultura , Alicerces Teciduais/química , Gelatina/metabolismo , Prepúcio do Pênis , Oxigênio/farmacologia , Oxigênio/metabolismo , Queratinócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Artif Organs ; 47(2): 302-316, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161305

RESUMO

BACKGROUND: Healing the full-thickness skin wounds has remained a challenge. One of the most frequently used grafts for skin regeneration is xenogeneic acellular dermal matrices (ADMs), including bovine ADMs. This study investigated the effect of the source animal age, enzymatic versus non-enzymatic decellularization protocols, and gamma irradiation versus ethylene oxide (EO) sterilization on the scaffold. METHODS: ADMs were prepared using the dermises of fetal bovine or calf skins. All groups were decellularized through chemical and mechanical methods, unless T-FADM samples, in which an enzymatic step was added to the decellularization protocol. All groups were sterilized with ethylene oxide (EO), except G-FADM which was sterilized using gamma irradiation. The scaffolds were characterized through scanning electron microscopy, differential scanning calorimetry, tensile test, MTT assay, DNA quantification, and real-time PCR. The performance of the ADMs in wound treatment was also evaluated macroscopically and histologically. RESULTS: All ADMs were effectively decellularized. In comparison to FADM (EO-sterilized fetal ADM), morphological, and mechanical properties of G-FADM, T-FADM, and CADM (EOsterilized calf ADM) were changed to different extents. In addition, the CADM and G-FADM were thermally more stable than the FADM and T-FADM. Although all ADMs were noncytotoxic, the wounds of the FADM, T-FADM, and G-FADM groups were contracted to almost 30.0% of the original area on day 7, significantly faster than the CADM (17.5% ± 1.7) and control (12.2% ± 1.59) groups. However, by day 21, all ADMs were mostly closed except for the untreated group (60.1 ± 1.8). CONCLUSION: Altogether, fetal source and EO-sterilized samples performed better than calf source and gamma-sterilized samples unless in some mechanical properties. There was no added value in using enzymatic treatment during the decellularization process. Our results suggest that the age, decellularization, and sterilization methods of animal source should be selected based on the clinical requirements.


Assuntos
Derme Acelular , Animais , Bovinos , Óxido de Etileno , Cicatrização , Transplante de Pele/métodos , Esterilização
3.
Cell Tissue Bank ; 24(1): 191-202, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35804250

RESUMO

To prepare a new type of porcine acellular dermis matrix (PADM) with the new laser microporous technique and verify its safety and feasibility. A novel porcine acellular dermis matrix (ADM) was prepared by using sequential combined decellularization of trypsin, neutral protease and SDS solution method and fully rinsed with ultrasonic wave. Specific laser microporous technology was used to prepare the laser micropore porcine acellular dermal matrix (LPADM). SD rats were chose as the animal models and autologous skin was transplanted by one-step method to observe and detect the graft activity, immunogenicity and vascularization degree of the novel PADM. A porcelain white, shiny, soft and elastic dermal matrix was prepared in this study, the results showed low DNA residue and low cytotoxicity. HE staining and SEM observation revealed that the PADM had neither residual cells nor cell fragments, while the collagen bundles were intact and orderly arranged. All the SD rats survived. No infection or skin allergy was found after surgery. None of the animals lost weight. Histological examination showed that the LPADM was fully vascularized with little tissue destruction in the experiment group. Immunohistochemical staining for CD31 showed ideal vascularization in the experiment group, and immunohistochemical staining for TNF-α showed there were no statistical significance of inflammatory reaction in both groups. This study demonstrated that the novel PADM prepared by sequential combined decellularization of trypsin, neutral protease and SDS solution method and new laser microporous technique was effective and safe in animal transplantation.


Assuntos
Derme Acelular , Ratos , Animais , Suínos , Transplante de Pele/métodos , Cicatrização , Tripsina , Ratos Sprague-Dawley , Lasers
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003548

RESUMO

According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.


Assuntos
Queimaduras , Cicatrização , Humanos , Pele , Transplante de Pele , Bandagens , Queimaduras/cirurgia
5.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457113

RESUMO

Fibrin hydrogels are one of the most popular scaffolds used in tissue engineering due to their excellent biological properties. Special attention should be paid to the use of human plasma-derived fibrin hydrogels as a 3D scaffold in the production of autologous skin grafts, skeletal muscle regeneration and bone tissue repair. However, mechanical weakness and rapid degradation, which causes plasma-derived fibrin matrices to shrink significantly, prompted us to improve their stability. In our study, plasma-derived fibrin was chemically bonded to oxidized alginate (alginate di-aldehyde, ADA) at 10%, 20%, 50% and 80% oxidation, by Schiff base formation, to produce natural hydrogels for tissue engineering applications. First, gelling time studies showed that the degree of ADA oxidation inhibits fibrin polymerization, which we associate with fiber increment and decreased fiber density; moreover, the storage modulus increased when increasing the final volume of CaCl2 (1% w/v) from 80 µL to 200 µL per milliliter of hydrogel. The contraction was similar in matrices with and without human primary fibroblasts (hFBs). In addition, proliferation studies with encapsulated hFBs showed an increment in cell viability in hydrogels with ADA at 10% oxidation at days 1 and 3 with 80 µL of CaCl2; by increasing this compound (CaCl2), the proliferation does not significantly increase until day 7. In the presence of 10% alginate oxidation, the proliferation results are similar to the control, in contrast to the sample with 20% oxidation whose proliferation decreases. Finally, the viability studies showed that the hFB morphology was maintained regardless of the degree of oxidation used; however, the quantity of CaCl2 influences the spread of the hFBs.


Assuntos
Aldeídos , Alginatos , Hidrogéis , Aldeídos/química , Alginatos/química , Cloreto de Cálcio/farmacologia , Fibrina , Humanos , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Int Wound J ; 19(7): 1934-1954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35297170

RESUMO

Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.


Assuntos
Bandagens , Pele Artificial , Humanos , Cicatrização , Materiais Biocompatíveis , Peptídeos e Proteínas de Sinalização Intercelular
7.
J Nanobiotechnology ; 19(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397416

RESUMO

Skin is the body's first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


Assuntos
Nanocompostos , Alicerces Teciduais , Cicatrização , Indutores da Angiogênese , Angiopoietinas/metabolismo , Animais , Vasos Sanguíneos , Humanos , Qualidade de Vida , Pele , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular
8.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201667

RESUMO

Human plasma-derived bilayered skin substitutes were successfully used by our group to produce human-based in vitro skin models for toxicity, cosmetic, and pharmaceutical testing. However, mechanical weakness, which causes the plasma-derived fibrin matrices to contract significantly, led us to attempt to improve their stability. In this work, we studied whether an increase in fibrin concentration from 1.2 to 2.4 mg/mL (which is the useful fibrinogen concentration range that can be obtained from plasma) improves the matrix and, hence, the performance of the in vitro skin cultures. The results show that this increase in fibrin concentration indeed affected the mechanical properties by doubling the elastic moduli and the maximum load. A structural analysis indicated a decreased porosity for the 2.4 mg/mL hydrogels, which can help explain this mechanical behavior. The contraction was clearly reduced for the 2.4 mg/mL matrices, which also allowed for the growth and proliferation of primary fibroblasts and keratinocytes, although at a somewhat reduced rate compared to the 1.2 mg/mL gels. Finally, both concentrations of fibrin gave rise to organotypic skin cultures with a fully differentiated epidermis, although their lifespans were longer (25-35%) in cultures with more concentrated matrices, which improves their usefulness. These systems will allow the generation of much better in vitro skin models for the testing of drugs, cosmetics and chemicals, or even to "personalized" skin for the diagnosis or determination of the most effective treatment possible.


Assuntos
Diferenciação Celular , Derme/citologia , Epiderme/fisiologia , Fibrina/metabolismo , Hidrogéis/metabolismo , Queratinócitos/citologia , Alicerces Teciduais/química , Proliferação de Células , Células Cultivadas , Derme/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Hidrogéis/química , Queratinócitos/metabolismo , Pele/citologia , Pele/metabolismo , Engenharia Tecidual
9.
J Surg Res ; 245: 31-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400575

RESUMO

Treatment of full-thickness skin wounds with minimal scarring and complete restoration of native tissue properties still exists as a clinical challenge. A bilayer skin substitute was fabricated by coating human amniotic membrane (AM) with electrospun silk fibroin nanofibers, and its in vivo biological behavior was studied using murine full-thickness skin wound model. Donut-shaped silicon splints were utilized to prevent wound contraction in mouse skin and simulate re-epithelialization, which is the normal path of human wound healing. Skin regeneration using the bilayer scaffold was compared with AM and untreated defect after 30 d. Tissue samples were taken from healed wound areas and investigated through histopathological and immunohistochemical staining to visualize involucrin (IVL), P63, collagen I, CD31, and vascular endothelial growth factor. In addition, mRNA expression of IVL, P63, interleukin-6, and cyclooxygenase-2 was studied. The application of bilayer scaffold resulted in the best epidermal and dermal regeneration, demonstrated by histopathological examination and molecular analysis. In regenerated wounds of the bilayer scaffold group, the mRNA expression levels of inflammatory markers (interleukin-6 and cyclooxygenase-2) were downregulated, and the expression pattern of keratinocyte markers (IVL and P63) at both mRNA and protein levels was more similar to native tissue in comparison with AM and no-treatment groups. There was no significant difference in the expression level of collagen I, CD31, and vascular endothelial growth factor among different groups. Conclusively, these promising results serve as a supporting evidence for proceeding to clinical phase to examine the capacity of this bilayer scaffold for human skin regeneration.


Assuntos
Cicatriz/prevenção & controle , Reepitelização , Pele Artificial , Pele/lesões , Ferimentos e Lesões/terapia , Animais , Cicatriz/etiologia , Modelos Animais de Doenças , Feminino , Fibroínas/química , Humanos , Camundongos , Nanofibras/química , Alicerces Teciduais/química , Ferimentos e Lesões/complicações
10.
J Cell Biochem ; 120(8): 12182-12191, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30937961

RESUMO

In this study, we aimed to investigate the phenotypic characteristics of human immortal skin keratinocytes (HaCaT) cells and the role of acellular dermal matrix (ADM) in coculture system of HaCaT cells and ADM. Flow cytometry was used to examine the cluster of differentiation (CD) makers of HaCaT cells. Apoptosis analysis was applied to detect the apoptosis rate of HaCaT cells. Morphological observation of ADM isolated from the reticular layer of Sprague-Dawley rat dermis was utilized to evaluate the morphological structure of ADM. Methylthiazolyl tetrazolium (MTT) assay and morphological experiments were further used to confirm the scaffold role of ADM in HaCaT cells. A wound-healing mice model accompanied by HaCaT-ADM scaffold transplantation was performed to further verify the function of HaCaT-ADM scaffold. Our results showed that CD71, CD49f, K19, and CD29 were highly expressed in HaCaT cells, and the percentage of apoptosis cells was significantly increased, which represented that HaCaT cells had much stronger capacities of adhesion and proliferation than normal human keratinocytes. Additionally, the morphological structure of ADM presented many natural microbores, which made cells rapidly grow on ADM. The results exhibited that the HaCaT cells indeed promptly proliferate on ADM and easily grow into the microbores of ADM. Finally, an in vivo experiment further confirmed that the transplantation of the HaCaT-ADM scaffold into the dorsal skin of a wound-healing mice model could gradually repair the injured wound. Thus, these findings indicated that HaCaT cells might be as seed cells to develop skin tissue engineering and the HaCaT-ADM scaffold might be a better candidate to promote skin repair and regeneration.


Assuntos
Derme Acelular , Queratinócitos/citologia , Regeneração , Pele/patologia , Alicerces Teciduais/química , Cicatrização , Animais , Apoptose , Linhagem Celular Transformada , Proliferação de Células , Modelos Animais de Doenças , Humanos , Queratinócitos/transplante , Camundongos Endogâmicos C57BL , Fenótipo
11.
J Cell Biochem ; 120(10): 17194-17207, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31104319

RESUMO

BACKGROUND: Loss of skin integrity due to injury, burning, or illness makes the development of new treatment options necessary. Skin tissue engineering provides some solutions for these problems. OBJECTIVE: The potential of a biodegradable star-shaped copolymer [Poly(CL─CO─LA)-b-PEG] and penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) was assessed for skin tissue engineering applications. METHODS: Two copolymers were synthesized for cellular culture scaffolds and their mechanical properties were compared. The resulting star-shaped copolymer and thermosensitive penta-block copolymer were characterized using Fourier transform infrared and nuclear magnetic resonance spectroscopy. The crystallizability of the two copolymers was analyzed using X-ray diffraction. The resulting thermosensitive penta-block copolymer was evaluated by differential thermal analysis, differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscopy and in vitro degradation of the polymer network in phosphate buffer solutions (pH 7.4) at 37°C were also examined. The pore size of the gels was calculated with Image Analyzer software. Finally, the cytotoxic, morphological, and gene expression effects of copolymers on the skin fibroblast were evaluated. RESULTS: The experiments showed that the PNIPAAm-PCL-PEG-PCL-PNIPAAm polymer with the right composition and the expected molecular weight was achieved. The hydrogel had less crystallizability compared with its precursors. The resulting thermosensitive hydrogel had a three-dimensional structure with interconnected pores that mimicked the extracellular matrix. The control of the degradability rate can be possible by weight percent changes. The pore size correlated with the polymer concentration in aqueous solution and the pore sizes of the 20 wt% hydrogel were better for fibroblast cultivation than those of the 10 wt% hydrogel. Cell proliferation on the 20% gel was more than that of the 10% gel. The hydrogel not only preserved the viability and phenotypical morphology of the entrapped cells but also stimulated the initial cell-cell interactions and proliferation of fibroblasts. The hydrogel did not influence cell conformation and this property of the polymer underlined its safety. Cells seeded on this copolymer showed a normal and spear shape and formed a focal adhesion with the hydrogel surface. Notably, the hydrogel increased collagen I α1 and collagen III mRNAs expression. CONCLUSION: Due to the low molecular weight and poor mechanical strength of the star-shaped copolymer, it was not considered for fabrication of the scaffolds for wound healing. The biodegradable, biocompatible, injectable and thermosensitive PNIPAAm-PCL-PEG-PCL-PNIPAAm hydrogel in 20 wt% demonstrated a desirable potential for future application as a cell scaffold in skin tissue engineering and wound healing.


Assuntos
Implantes Absorvíveis , Fibroblastos/efeitos dos fármacos , Hidrogéis/síntese química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Resinas Acrílicas/química , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/agonistas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/agonistas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Porosidade , RNA Mensageiro/agonistas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/citologia , Temperatura , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos
12.
J Cell Biochem ; 120(7): 11441-11453, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746766

RESUMO

The function of fibroblast cells in wounded areas results in reconstruction of the extra cellular matrix and consequently resolution of granulation tissue. It is suggested that the use of platelet-rich plasma can accelerate the healing process in nonhealing or slow-healing wounds. In this study, a simple and novel method has been used to fabricate an electrospun three-layered scaffold containing plasma rich in growth factor with the aim of increasing the proliferation and migration of fibroblast cells in vitro. First, plasma rich in growth factor was derived from platelet rich plasma, and then a three-layered scaffold was fabricated using PLLA nanofibers as the outer layers and plasma rich in growth factor-containing gelatin fibers as the internal layer. The growth morphology of cells seeded on this scaffold was compared to those seeded on one layered PLLA scaffold. The study of the cell growth rate on different substrates and the migration of cells in response to the drug release of multilayered scaffold was investigated by the cell quantification assay and a modified under agarose assay. Scanning electron microscopy and fluorescence images showed that cells seeded on multilayered scaffold were completely oriented 72 hours after seeding compared to those seeded on PLLA scaffold. The cell quantification assay also indicated significant increase in proliferation rate of cells seeded on three-layered scaffold compared to those seeded on PLLA scaffold and finally, monitoring cell migration proved that cells migrate significantly toward the three-layered scaffold up to 48 to 72 hours and afterwards start to show a diminished migration rate toward this scaffold.

13.
Cell Tissue Res ; 376(3): 389-400, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666537

RESUMO

Cultured epithelial autograft (CEA) was the birth of skin tissue engineering and encompassed methodologies for the isolation and expansion of autologous basal keratinocytes for burn treatment that are still practiced at some specialised units around the world. One of the limitations of CEA, however, is the reliance on animal-derived material during the manufacturing process and despite all efforts to date, no xeno-free alternative with proven efficacy has been reported. Here, we investigate whether human-derived fibroblast feeder cells and human serum can sufficiently and effectively provide a suitable microenvironment for adult keratinocyte isolation and expansion. Human dermal fibroblasts and epidermal keratinocytes were isolated from discarded skin during abdominoplasty and breast reduction procedures and cultured in xeno-free conditions. We report that these xeno-free adult keratinocytes form similar numbers of colony-forming units as those cultured using the Green's methods; however, xeno-free keratinocytes express lower levels of α6 integrin (CD49f; a progenitor and stem cell marker). We identified IL-8 as a potential growth factor secreted by adult human fibroblasts that may enhance keratinocyte colony formation in human serum. Finally, we propose a step-by-step xeno-free isolation and cultivation methodology for adult keratinocytes that can be tested further in serial cultivation for clinical application.


Assuntos
Células Alimentadoras , Queratinócitos/citologia , Engenharia Tecidual/métodos , Adulto , Autoenxertos , Proliferação de Células , Separação Celular , Técnicas de Cocultura , Feminino , Humanos , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Soro
14.
Pediatr Surg Int ; 35(1): 121-127, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30382375

RESUMO

AIM OF THE STUDY: The use of autologous bio-engineered dermo-epidermal skin substitutes (DESS) yields a pivotal opportunity to cover large skin defects in human patients. These skin grafts consist of both epidermal and dermal compartments necessary for robust and permanent functional wound closure. In this study, we investigated the impact of mesenchymal cells derived from different body site origins on the expression pattern of diverse markers within DESS. METHODS: Human keratinocytes were obtained from interfollicular epidermis, and mesenchymal cells were isolated from foreskin, palmar skin, fat tissue, and tonsils. After expansion, epidermal cells were seeded on collagen I hydrogels containing stromal cells. These human DESS were transplanted on the back of immune-incompetent rats. After 3 weeks, transplants were excised and analyzed using immunohistology techniques. MAIN RESULTS: The macroscopic appearance of skin grafts containing tonsil, fat tissue, or palmar derived mesenchymal cells, was similar to substitutes with foreskin derived dermal fibroblasts. All skin grafts had a strong membrane-localized expression of Lingo-1 in the epidermis. Additionally, we observed an intense expression of transglutaminase 5 in upper epidermal cell layers of the skin grafts confirming a proper keratinocyte differentiation. Tropoelastin was localized throughout the dermal compartments and tightly in contact with the dermo-epidermal junction suggesting an advanced maturation of all skin grafts. CONCLUSIONS: Our data implicate that stromal cells derived from tonsil, fat tissue, and palmar skin can assume fibroblast functions supporting keratinocyte proliferation and differentiation. These findings indicate that distinct types of mesenchymal cells can be clinically used for skin engineering purposes.


Assuntos
Derme/transplante , Transplante de Pele/métodos , Pele Artificial , Células Estromais/citologia , Engenharia Tecidual/métodos , Adolescente , Adulto , Idoso , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Epiderme/transplante , Feminino , Fibroblastos/citologia , Humanos , Lactente , Queratinócitos/citologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Pediatr Surg Int ; 34(2): 129-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29124400

RESUMO

AIMS AND OBJECTIVES: Vascularized bio-engineered human dermo-epidermal skin substitutes (vascDESS) hold promise for treating burn patients, including those with severe full-thickness wounds. We have previously shown that vascDESS promote wound healing by enhanced influx of macrophages and granulocytes. Immediately following transplantation, macrophages infiltrate the graft and differentiate into a pro-inflammatory (M1) or a pro-healing M2 phenotype. The aim of this study was to characterize the activation state of macrophages infiltrating skin transplants at distinct time points following transplantation. METHODS: Keratinocytes and the stromal vascular fraction (SVF) were derived from human skin or adipose tissue, respectively. Human SVF containing both endothelial and mesenchymal/stromal cells was used to generate vascularized dermal component in vitro, which was subsequently covered with human keratinocytes. Finally, vascDESS were transplanted on the back of immuno-incompetent rats, excised, and analyzed after 1 and 3 weeks using immunohistological techniques. RESULTS: A panel of markers of macrophage M1 (nitric oxide synthase: iNOS) and M2 (CD206) subclass was used. All skin grafts were infiltrated by both M1 and M2 rat macrophages between 1-3 weeks post-transplantation. CD68 (PG-M1) was used as a pan-macrophage marker. The number of CD68+CD206+ M2-polarized macrophages was higher in 3-week transplants as compared to early-stage transplants (1 week). In contrast, the number of CD68+iNOS+ M1 cells was markedly decreased in later stages in vivo. CONCLUSIONS: Macrophages exhibit a heterogeneous and temporally regulated polarization during skin wound healing. Our results suggest that the phenotype of macrophages changes during healing from a more pro-inflammatory (M1) profile in early stages after injury, to a less inflammatory, pro-healing (M2) phenotype in later phases in vivo.


Assuntos
Tecido Adiposo/citologia , Derme/citologia , Células Epidérmicas , Queratinócitos/citologia , Macrófagos/citologia , Transplante de Pele/métodos , Engenharia Tecidual/métodos , Adolescente , Animais , Biomarcadores/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Derme/metabolismo , Epiderme/metabolismo , Humanos , Lactente , Queratinócitos/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Células-Tronco Mesenquimais/citologia , Modelos Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Ratos , Receptores de Superfície Celular/metabolismo , Pele Artificial , Cicatrização
16.
Methods ; 99: 3-12, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318088

RESUMO

Full thickness wound healing with minimal scarring and complete restoration of normal skin properties still remains as a clinical challenge. In this study, a bilayer skin substitute has been fabricated to biomimic the microstructure of natural extracellular matrix of the skin. Human amniotic membrane (HAM) and silk fibroin nano-fibers were combined to produce bilayer construct, which was further treated and characterized. HAM was obtained from healthy mothers and de-epithelized by means of fine enzymatic method to preserve the extracellular structure. Fibroin protein was extracted from fresh Bombyx mori cocoons and transformed to uniform nano-fiberous structure, which was used as a coating layer on the de-epithelized membrane. Surface modification through oxygen plasma treatment was attempted to further induce hydrophilicity. Subsequently, scaffolds were fully characterized in terms of morphology, mechanical properties, hydrophilicity and cell culture response. Histological and immunohistological staining demonstrated localization of fibronectin, cell denudation and structural integrity of HAM after de-epithelization. Scanning electron microscopy images showed bead-free silk fibroin nano-fibers with the average diameter of 250nm. Water contact angle of bilayer scaffolds reduced dramatically to 26.34° after oxygen plasma treatment, which is correlated with more hydrophilic surface. Due to fibroin nano-fiber coating, mechanical properties of HAM improved significantly. Tensile Young's modulus and tensile strength increased from 16.14MPa and 68.46MPa to 25.69MPa and 108.03MPa, respectively. 14days in vitro cultivation of mouse embryonic fibroblasts on the scaffolds revealed that bilayer scaffolds are able to support cell attachment and proliferation. Plasma-etched scaffolds provided the best niche for cell-matrix crosstalk by allowing cells to penetrate beneath the pores and to integrate in fibers direction. The obtained results suggest that the presented nano-fibrous bilayer composite based on HAM is a potential substitute for skin regeneration application.


Assuntos
Materiais Biocompatíveis/química , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química , Âmnio/citologia , Animais , Bombyx , Técnicas de Cultura de Células , Células Cultivadas , Módulo de Elasticidade , Feminino , Fibroínas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Reepitelização
17.
J Mater Sci Mater Med ; 28(1): 14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27995492

RESUMO

Skin damage can occur for many reasons, including burns and injuries, which in extreme cases can even lead to death. Different methods such as electrospinning are used to produce scaffolds used in skin tissue engineering. Natural and synthetic polymers were used in this method. It was observed that the use of both natural and synthetic polymers gives better results for cell culturing rather than using of each material solely. In this study, scaffolds of poly(lactic-co-glycolic acid) and collagen were prepared using coating and common solvent methods. The characteristics of samples were evaluated through scanning electron microscopy, porosimetry, mechanical testing, degradation behavior, and in vitro assays. The mechanical and biocompatibility test results of the scaffold prepared by coating method were better than the other one. However, the degradation rate of the common solvent was nearly five times more than coating sample that leads to cytotoxicity in contact with the skin cells.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Ácido Láctico/química , Ácido Poliglicólico/química , Pele Artificial , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adesão Celular , Células Cultivadas , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Pele/patologia , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração
18.
AAPS PharmSciTech ; 18(1): 72-81, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26883261

RESUMO

In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Pele/química , Adesão Celular/fisiologia , Colágeno/química , Fibroblastos/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Espectroscopia Fotoeletrônica/métodos , Propriedades de Superfície , Engenharia Tecidual/métodos , Alicerces Teciduais , Titânio/química
19.
Int Wound J ; 14(6): 1076-1087, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28440042

RESUMO

Dressing materials involve conventional gauzes and modern materials such as hydrogels and foam-based biomaterials. Although the choice of dressing material depends on the type of wound, a dressing material is expected to be non-cytotoxic. Additionally, moist dressing is considered appropriate to accelerate epithelialisation, while dry dressing may cause tissue damage during removal. An ideal dressing material is expected to provide a moist environment and degrade and release the drug for faster wound healing. Thus, we have designed a hydrogel-based biodegradable dressing material to provide the moist environment with no cytotoxic effect in vitro. The design of the hydrogel involved alginate-collagen reinforced with whisker cellulose derived from cotton. The hydrogel was prepared via amide linkage in the presence of 1-ethyl-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS), followed by divalent cationic cross-linking of alginate and hydrogen bonding with cellulose. The high water retention capability of the hydrogel enables a moist environment to be maintained in the wounded area. The constituents of the hydrogel provided a microenvironment that was suitable for cell proliferation in the vicinity of the hydrogel but inhibited cell attachment on it. The MTT assay results indicated a higher fibroblast proliferation and viability in the presence of the hydrogel.


Assuntos
Curativos Hidrocoloides , Materiais Biocompatíveis , Desenho de Equipamento
20.
Pediatr Surg Int ; 32(1): 17-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26621500

RESUMO

PURPOSE: The need for clinically applicable skin substitutes continues to be a matter of fact. Hypothetically, a laboratory grown autologous skin analog with near normal architecture might be a suitable approach to yield both satisfactory functional and cosmetic long-term results. In this study, we explored the use of human endothelial cells derived from freshly isolated adipose stromal vascular fraction (SVF) in a three-dimensional (3D) co-culture model of vascularized bio-engineered skin substitute. METHODS: The SVF was isolated from human white adipose tissue samples and keratinocytes from human skin biopsies. The SVF, in particular endothelial cells, were characterized using flow cytometry and immuofluorescence analysis. Endothelial and mesenchymal progenitors from the SVF formed blood capillaries after seeding into a 3D collagen type I hydrogel in vitro. Subsequently, human keratinocytes were seeded on the top of those hydrogels to develop a vascularized dermo-epidermal skin substitute. RESULTS: Flow cytometric analysis of surface markers of the freshly isolated SVF showed the expression of endothelial markers (CD31, CD34, CD146), mesenchymal/stromal cell-associated markers (CD44, CD73, CD90, CD105), stem cell markers (CD49f, CD117, CD133), and additionally hematopoietic markers (CD14, CD15, CD45). Further analysis of white adipose-derived endothelial cells (watECs) revealed the co-expression of CD31, CD34, CD90, CD105, and partially CD146 on these cells. WatECs were separated from adipose-stromal cells (watASCs) using FACS sorting. WatASCs and watECs cultured separately in a 3D hydrogel for 3 weeks did not form any vascular structures. Only if co-cultured, both cell types aligned to develop a ramified vascular network in vitro with continuous endothelial lumen formation. Transplantation of those 3D-hydrogels onto immuno-incompetent rats resulted in a rapid connection of human capillaries with the host vessels and formation of functional, blood-perfused mosaic human-rat vessels within only 3-4 days. CONCLUSIONS: Adipose tissue represents an attractive cell source due to the ease of isolation and abundance of endothelial as well as mesenchymal cell lineages. Adipose-derived SVF cells exhibit the ability to form microvascular structures in vitro and support the accelerated blood perfusion in skin substitutes in vivo when transplanted.


Assuntos
Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/metabolismo , Células Endoteliais/metabolismo , Pele Artificial , Tecido Adiposo/citologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Criança , Pré-Escolar , Técnicas de Cocultura , Células Endoteliais/citologia , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Células Estromais/citologia , Células Estromais/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA