Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1980): 20221230, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946160

RESUMO

A person's focus of attention is conveyed by the direction of their eyes and face, providing a simple visual cue fundamental to social interaction. A growing body of research examines the visual mechanisms that encode the direction of another person's gaze as we observe them. Here we investigate the spatial receptive field properties of these mechanisms, by testing the spatial selectivity of sensory adaptation to gaze direction. Human observers were adapted to faces with averted gaze presented in one visual hemifield, then tested in their perception of gaze direction for faces presented in the same or opposite hemifield. Adaptation caused strong, repulsive perceptual aftereffects, but only for faces presented in the same hemifield as the adapter. This occurred even though adapting and test stimuli were in the same external location across saccades. Hence, there was clear evidence for retinotopic adaptation and a relative lack of either spatiotopic or spatially invariant adaptation. These results indicate that adaptable representations of gaze direction in the human visual system have retinotopic spatial receptive fields. This strategy of coding others' direction of gaze with positional specificity relative to one's own eye position may facilitate key functions of gaze perception, such as socially cued shifts in visual attention.


Assuntos
Movimentos Sacádicos , Percepção Visual , Adaptação Fisiológica , Sinais (Psicologia) , Olho , Fixação Ocular , Humanos , Estimulação Luminosa/métodos
2.
J Undergrad Neurosci Educ ; 19(2): R23-R27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552444

RESUMO

Animals navigate within their surrounding environment to find food, shelter, and mates; this behavior forms one of the most basic means of survival. The vertebrate hippocampus acts as an integration hub for varied dynamic processes such as attention, memory, perception, and decision-making. This ultimately allows an animal to move efficiently in its surroundings in search of food or to escape from predators. Place cells are neurons located within the hippocampus which are triggered in response to an animal entering specific places in its local environment. John O' Keefe first described the firing patterns of these cells in 1976 in a paper published in Experimental Neurology. This was a pioneering effort in combining the efficacy of electrophysiological recordings with the value of behavioral approaches in freely moving animals. The author also presented testable hypotheses of plausible mechanisms governing place cell activation which in turn provided a conceptual scaffold for a diverse range of subsequent work in the field. This is an excellent paper for undergraduate education because it provides the historical context to an important research avenue while simultaneously showing how clear and concise hypotheses can emerge from studying how neural activity correlates with animal behaviour.

3.
J Neurophysiol ; 122(4): 1753-1764, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461375

RESUMO

Inherited retinal degenerations encompass a wide range of diseases that result in the death of rod and cone photoreceptors, eventually leading to irreversible blindness. Low vision survives at early stages of degeneration, at which point it could rely on residual populations of rod/cone photoreceptors as well as the inner retinal photoreceptor, melanopsin. To date, the impact of partial retinal degeneration on visual responses in the primary visual thalamus (dorsal lateral geniculate nucleus, dLGN) remains unknown, as does their relative reliance on surviving rod and cone photoreceptors vs. melanopsin. To answer these questions, we recorded visually evoked responses in the dLGN of anesthetized rd1 mice using in vivo electrophysiology at an age (3-5 wk) at which cones are partially degenerate and rods are absent. We found that excitatory (ON) responses to light had lower amplitude and longer latency in rd1 mice compared with age-matched visually intact controls; however, contrast sensitivity and spatial receptive field size were largely unaffected at this early stage of degeneration. Responses were retained when those wavelengths to which melanopsin is most sensitive were depleted, indicating that they were driven primarily by surviving cones. Inhibitory responses appeared absent in the rd1 thalamus, as did light-evoked gamma oscillations in firing. This description of fundamental features of the dLGN visual response at this intermediate stage of retinal degeneration provides a context for emerging attempts to restore vision by introducing ectopic photoreception to the degenerate retina.NEW & NOTEWORTHY This study provides new therapeutically relevant insights to visual responses in the dorsal lateral geniculate nucleus during progressive retinal degeneration. Using in vivo electrophysiology, we demonstrate that visual responses have lower amplitude and longer latency during degeneration, but contrast sensitivity and spatial receptive fields remain unaffected. Such visual responses are driven predominantly by surviving cones rather than melanopsin photoreceptors. The functional integrity of this visual pathway is encouraging for emerging attempts at visual restoration.


Assuntos
Potenciais Evocados Visuais , Corpos Geniculados/fisiopatologia , Degeneração Retiniana/fisiopatologia , Animais , Sensibilidades de Contraste , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Ritmo Gama , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular
4.
Brain Behav Evol ; 94(1-4): 61-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31747669

RESUMO

Echolocating bats evolved a sophisticated biosonar imaging system that allows for a life in dim-light habitats. However, especially for far-range operations such as homing, bats can support biosonar by vision. Large eyes and a retina that mainly consists of rods are assumed to be the optical adjustments that enable bats to use visual information at low light levels. In addition to optical mechanisms, many nocturnal animals evolved neural adaptations such as elongated integration times or enlarged spatial sampling areas to further increase the sensitivity of their visual system by temporal or spatial summation of visual information. The neural mechanisms that underlie the visual capabilities of echolocating bats have, however, so far not been investigated. To shed light on spatial and temporal response characteristics of visual neurons in an echolocating bat, Phyllostomus discolor, we recorded extracellular multiunit activity in the retino-recipient superficial layers of the superior colliculus (SC). We discovered that response latencies of these neurons were generally in the mammalian range, whereas neural spatial sampling areas were unusually large compared to those measured in the SC of other mammals. From this we suggest that echolocating bats likely use spatial but not temporal summation of visual input to improve visual performance under dim-light conditions. Furthermore, we hypothesize that bats compensate for the loss of visual spatial precision, which is a byproduct of spatial summation, by integration of spatial information provided by both the visual and the biosonar systems. Given that knowledge about neural adaptations to dim-light vision is mainly based on studies done in non-mammalian species, our novel data provide a valuable contribution to the field and demonstrate the suitability of echolocating bats as a nocturnal animal model to study the neurophysiological aspects of dim-light vision.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Visão Ocular/fisiologia , Animais , Feminino , Masculino , Neurônios/fisiologia , Processamento Espacial/fisiologia , Colículos Superiores/fisiologia
5.
Annu Rev Vis Sci ; 6: 313-334, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32552571

RESUMO

The physiological response properties of neurons in the visual system are inherited mainly from feedforward inputs. Interestingly, feedback inputs often outnumber feedforward inputs. Although they are numerous, feedback connections are weaker, slower, and considered to be modulatory, in contrast to fast, high-efficacy feedforward connections. Accordingly, the functional role of feedback in visual processing has remained a fundamental mystery in vision science. At the core of this mystery are questions about whether feedback circuits regulate spatial receptive field properties versus temporal responses among target neurons, or whether feedback serves a more global role in arousal or attention. These proposed functions are not mutually exclusive, and there is compelling evidence to support multiple functional roles for feedback. In this review, the role of feedback in vision will be explored mainly from the perspective of corticothalamic feedback. Further generalized principles of feedback applicable to corticocortical connections will also be considered.


Assuntos
Retroalimentação , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Humanos , Neurônios , Estimulação Luminosa , Vias Visuais
6.
Neuroscience ; 256: 147-62, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24183964

RESUMO

Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location - highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping SC-mediated behaviors.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Colículos Superiores/citologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Mapeamento Encefálico , Gatos , Estimulação Luminosa , Colículos Superiores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA