Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nano Lett ; 24(3): 1001-1008, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198561

RESUMO

We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.

2.
Small ; : e2403073, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966892

RESUMO

Spin injection, transport, and detection across the interface between a ferromagnet and a spin-carrying channel are crucial for energy-efficient spin logic devices. However, interfacial conductance mismatch, spin dephasing, and inefficient spin-to-charge conversion significantly reduce the efficiency of these processes. In this study, it is demonstrated that an all van der Waals heterostructure consisting of a ferromagnet (Fe3GeTe2) and Weyl semimetal enables a large spin readout efficiency. Specifically, a nonlocal spin readout signal of 150 mΩ and a local spin readout signal of 7.8 Ω is achieved, which reach the signal level useful for practical spintronic devices. The remarkable spin readout signal is attributed to suppressed spin dephasing channels at the vdW interfaces, long spin diffusion, and efficient charge-spin interconversion in Td-MoTe2. These findings highlight the potential of vdW heterostructures for spin Hall effect-enabled spin detection with high efficiency, opening up new possibilities for spin-orbit logic devices using vdW interfaces.

3.
Nano Lett ; 23(11): 4815-4821, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256831

RESUMO

Electrically controlled rotation of spins in a semiconducting channel is a prerequisite for the successful realization of many spintronic devices, like, e.g., the spin-field-effect transistor (sFET). To date, there have been only a few reports on electrically controlled spin precession in sFET-like devices. These devices operate in the ballistic regime, as postulated in the original sFET proposal, and hence need high SOC channel materials in practice. Here, we demonstrate gate-controlled precession of spins in a nonballistic sFET using an array of narrow diffusive wires as a channel between a spin source and a spin drain. Our study shows that spins traveling in a semiconducting channel can be coherently rotated on a distance far exceeding the electrons' mean free path, and spin-transistor functionality can be thus achieved in nonballistic channels with relatively low SOC, relaxing two major constraints of the original sFET proposal.

4.
Chemistry ; 29(59): e202301720, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515521

RESUMO

In this article, the enrichment of graphene and graphene oxide with free radicals through their functionalization with tyrosine is studied. In contrast with what is commonly observed in the functionalization of graphene with organic species the addition of tyrosine radicals on to the graphene substrate led to a remarkable increase of the aromatic character as indicated by the spectroscopic data. Similar behaviour was observed for the functionalization of graphene oxide. In addition, a brief analysis of the tyrosine functionalized graphene with EPR spectroscopy showed a remarkable enhancement of the spin density that could be useful in spintronics.

5.
Nano Lett ; 22(3): 935-941, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089714

RESUMO

Spintronics involves the development of low-dimensional electronic systems with potential use in quantum-based computation. In graphene, there has been significant progress in improving spin transport characteristics by encapsulation and reducing impurities, but the influence of standard two-dimensional (2D) tunnel contacts, via pinholes and doping of the graphene channel, remains difficult to eliminate. Here, we report the observation of spin injection and tunable spin signal in fully encapsulated graphene, enabled by van der Waals heterostructures with one-dimensional (1D) contacts. This architecture prevents significant doping from the contacts, enabling high-quality graphene channels, currently with mobilities up to 130 000 cm2 V-1 s-1 and spin diffusion lengths approaching 20 µm. The nanoscale-wide 1D contacts allow spin injection both at room and at low temperature, with the latter exhibiting efficiency comparable with 2D tunnel contacts. At low temperature, the spin signals can be enhanced by as much as an order of magnitude by electrostatic gating, adding new functionality.

6.
Small ; 18(32): e2203015, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35836101

RESUMO

Spintronics and molecular chemistry have achieved remarkable achievements separately. Their combination can apply the superiority of molecular diversity to intervene or manipulate the spin-related properties. It inevitably brings in a new type of functional devices with a molecular interface, which has become an emerging field in information storage and processing. Normally, spin polarization has to be realized by magnetic materials as manipulated by magnetic fields. Recently, chiral-induced spin selectivity (CISS) was discovered surprisingly that non-magnetic chiral molecules can generate spin polarization through their structural chirality. Here, the recent progress of integrating the strengths of molecular chemistry and spintronics is reviewed by introducing the experimental results, theoretical models, and device performances of the CISS effect. Compared to normal ferromagnetic metals, CISS originating from a chiral structure has great advantages of high spin polarization, excellent interface, simple preparation process, and low cost. It has the potential to obtain high efficiency of spin injection into metals and semiconductors, getting rid of magnetic fields and ferromagnetic electrodes. The physical mechanisms, unique advantages, and device performances of CISS are sequentially clarified, revealing important issues to current scientific research and industrial applications. This mini-review points out a key technology of information storage for future spintronic devices without magnetic components.


Assuntos
Campos Magnéticos , Imãs , Eletrodos , Estereoisomerismo
7.
Nano Lett ; 21(7): 3237-3244, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749285

RESUMO

Although light is the fastest means to manipulate the interfacial spin injection and magnetic proximity related quantum properties of two-dimensional (2D) magnetic van der Waals (vdW) heterostructures, its potential remains mostly untapped. Here, inspired by the recent discovery of 2D ferromagnets Fe3GeTe2 (FGT), we applied the real-time density functional theory (rt-TDDFT) to study photoinduced interlayer spin transfer dynamics in 2D nonmagnetic-ferromagnetic (NM-FM) vdW heterostructures, including graphene-FGT, silicene-FGT, germanene-FGT, antimonene-FGT and h-BN-FGT interfaces. We observed that laser pulses induce significant large spin injection from FGT to nonmagnetic (NM) layers within a few femtoseconds. In addition, we identified an interfacial atom-mediated spin transfer pathway in heterostructures in which the photoexcited spin of Fe first transfers to intralayered Te atoms and then hops to interlayered NM layers. Interlayer hopping is approximately two times slower than intralayer spin transfer. Our results provide the microscopic understanding for optically control interlayer spin dynamics in 2D magnetic heterostructures.

8.
Proc Natl Acad Sci U S A ; 114(8): 1783-1788, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28174272

RESUMO

We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.

9.
Nano Lett ; 19(3): 1605-1612, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30715894

RESUMO

With the help of the two-dimensional electron gas (2DEG) at the LaAlO3-SrTiO3 interface, spin and charge currents can be interconverted. However, the conversion efficiency has been strongly depressed by LaAlO3, which blocks spin transmission. It is therefore highly desired to explore 2DEGs sandwiched between ferromagnetic insulators that are transparent for magnons. By constructing epitaxial heterostructure with ferromagnetic EuO, which is conducting for spin current but insulating for electric current, and KTaO3, we successfully obtained the 2DEGs, which can receive thermally injected spin current directly from EuO and convert the spin current to charge current via inverse Edelstein effect of the interface. Strong dependence of the spin Seebeck coefficient on the layer thickness of EuO is further observed and the propagation length for non-equilibrium magnons in EuO has been determined. The present work demonstrates the great potential of the 2DEGs formed by ferromagnetic oxides for spin caloritronics.

10.
Nano Lett ; 18(4): 2381-2386, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29517243

RESUMO

The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X+) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

11.
Nano Lett ; 18(7): 4386-4395, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29898367

RESUMO

The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.

12.
Nano Lett ; 18(9): 5633-5639, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130408

RESUMO

We report a novel mechanism for the electrical injection and detection of out-of-plane spin accumulation via the anomalous spin Hall effect (ASHE), where the direction of the spin accumulation can be controlled by manipulating the magnetization of the ferromagnet. This mechanism is distinct from the spin Hall effect (SHE), where the spin accumulation is created along a fixed direction parallel to an interface. We demonstrate this unique property of the ASHE in nanowires made of permalloy (Py) to inject and detect out-of-plane spin accumulation in a magnetic insulator, yttrium iron garnet (YIG). We show that the efficiency for the injection/detection of out-of-plane spins can be up to 50% of that of in-plane spins. We further report the possibility to detect spin currents parallel to the Py/YIG interface for spins fully oriented in the out-of-plane direction, resulting in a sign reversal of the nonlocal magnon spin signal. The new mechanisms that we have demonstrated are highly relevant for spin torque devices and applications.


Assuntos
Ferro/química , Imãs/química , Nanofios/química , Ítrio/química , Eletricidade , Desenho de Equipamento , Magnetismo/instrumentação
13.
Nano Lett ; 16(9): 5792-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27575518

RESUMO

The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission that can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.

14.
Annu Rev Phys Chem ; 66: 263-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25622190

RESUMO

Recent experiments have demonstrated that the electron transmission yield through chiral molecules depends on the electron spin orientation. This phenomenon has been termed the chiral-induced spin selectivity (CISS) effect, and it provides a challenge to theory and promise for organic molecule-based spintronic devices. This article reviews recent developments in our understanding of CISS. Different theoretical models have been used to describe the effect; however, they all presume an unusually large spin-orbit coupling in chiral molecules for the effect to display the magnitudes seen in experiments. A simplified model for an electron's transport through a chiral potential suggests that these large couplings can be manifested. Techniques for measuring spin-selective electron transport through molecules are overviewed, and some examples of recent experiments are described. Finally, we present results obtained by studying several systems, and we describe the possible application of the CISS effect for memory devices.

15.
Nano Lett ; 15(4): 2417-21, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25727460

RESUMO

We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.


Assuntos
Dicroísmo Circular/instrumentação , Campos Magnéticos , Teste de Materiais/instrumentação , Microscopia de Varredura por Sonda/instrumentação , Teoria Quântica , Radiometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
16.
ACS Nano ; 18(18): 11732-11739, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670539

RESUMO

Spin injection stands out as a crucial method employed for initializing, manipulating, and measuring the spin states of electrons, which are fundamental to the creation of qubits in quantum computing. However, ensuring efficient spin injection while maintaining compatibility with standard semiconductor processing techniques is a significant challenge. Herein, we demonstrate the capability of inducing an ultrafast spin injection into a WSe2 layer from a magnetic CrI3 layer on a femtosecond time scale, achieved through real-time time-dependent density functional theory calculations upon a laser pulse. Following the peak of the magnetic moment in the CrI3 sublayer, the magnetic moment of the WSe2 layer reaches a maximum of 0.89 µB (per unit cell containing 4 WSe2 and 1 CrI3 units). During the spin dynamics, spin-polarized excited electrons transfer from the WSe2 layer to the CrI3 layer via type-II band alignment. The large spin splitting in conduction bands and the difference in the number of spin-polarized local unoccupied states available in the CrI3 layer lead to a net spin in the WSe2 layer. Furthermore, we confirmed that the number of available states, the spin-flip process, and the laser pulse parameters play important roles during the spin injection process. This work highlights the dynamic and rapid nature of spin manipulation in layered all-semiconductor systems, offering significant implications for the development and enhancement of quantum information processing technologies.

17.
Chem Asian J ; 18(3): e202201125, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510771

RESUMO

Spintronics, a new discipline focusing on the spin-dependent transport process of electrons, has been developing rapidly. Spin valves are the most significant carriers of spintronics utilizing the spin freedom of electrons. It is expected to pierce "Moore's Law" and become the core component in processors of the next generation. Organic semiconductors advance in their adjustable band gap, weak spin-orbit coupling and hyperfine interaction, excellent film-forming property, having enormous promise for spin valves. Here, the principle of spin valves is introduced, and the history and progress in organic spin injection and transport materials are summarized. Then we analyze the influence of spinterface on device performance and introduce reliable methods of constructing organic spin valves. Finally, the challenges for spin valves are discussed, and the future is proposed. We aim to draw the attention of researchers to organic spin valves and promote further research in spintronics through this paper.

18.
Adv Mater ; 35(31): e2300055, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37021326

RESUMO

Abundant spin-related phenomena that originate from interfaces between ferromagnetic electrodes and molecular semiconductors have greatly enriched research in spintronics, and they are considered promising for realizing novel spintronic functionalities in the future. However, despite great effort, the interfacial effect cannot be precisely controlled to achieve steady and predictable functions, especially at room temperature, and this has gradually become a significant bottleneck in the development of molecular spintronics. In this study, an innovative spin-filtering-competition mechanism is proposed to continuously modulate the interfacial effect in molecular spin valves at room temperature. To form this novel mechanism, the original spin-filtering effect from pure cobalt competes with the newly generated one, which is induced by the bonding effect between cobalt and lithium fluoride. Subsequently, by precisely controlling competition through lithium fluoride coverage on the cobalt surface, continuous modulation of the spin-injection process can be successfully achieved at room temperature. Spin polarization of the injected current and magnetoresistance effect can be actively controlled or their sign can be completely reversed through this novel mechanism. This study provides an innovative approach and theory for precisely controlling spin-related interfacial effects, which may further promote the scientific and technological development of spintronics.

19.
Nanoscale Res Lett ; 17(1): 74, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969318

RESUMO

Achieving high-efficient spin injection in semiconductors is critical for developing spintronic devices. Although a tunnel spin injector is typically used, the construction of a high-quality tunnel barrier remains a significant challenge due to the large lattice mismatch between oxides and semiconductors. In this work, van der Waals h-BN films with the atomically flat interface were engaged as the tunnel barrier to achieve high spin polarization in GaN, and the spin injection and transport in GaN were investigated systematically. Based on the Hanle precession and magnetic resistance measurements, CoFeB was determined as an optimal spin polarizer, bilayer h-BN tunnelling barrier was proven to yield a much higher spin polarization than the case of monolayer, and appropriate carrier concentration as well as higher crystal equality of n-GaN could effectively reduce the defect-induced spin scattering to improve the spin transport. The systematic understanding and the high efficiency of spin injection in this work may pave the way to the development of physical connotations and the applications of semiconductor spintronics.

20.
Adv Sci (Weinh) ; 9(21): e2200948, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596613

RESUMO

Topological materials have significant potential for spintronic applications owing to their superior spin-charge interconversion. Here, the spin-to-charge conversion (SCC) characteristics of epitaxial Bi1- x Sbx films is investigated across the topological phase transition by spintronic terahertz (THz) spectroscopy. An unexpected, intense spintronic THz emission is observed in the topologically nontrivial semimetal Bi1- x Sbx films, significantly greater than that of Pt and Bi2 Se3 , which indicates the potential of Bi1- x Sbx for spintronic applications. More importantly, the topological surface state (TSS) is observed to significantly contribute to SCC, despite the coexistence of the bulk state, which is possible via a unique ultrafast SCC process, considering the decay process of the spin-polarized hot electrons. This means that topological material-based spintronic devices should be fabricated in a manner that fully utilizes the TSS, not the bulk state, to maximize their performance. The results not only provide a clue for identifying the source of the giant spin Hall angle of Bi1- x Sbx , but also expand the application potential of topological materials by indicating that the optically induced spin current provides a unique method for focused-spin injection into the TSS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA